Cargando…

Influence of the Mn(5)Ge(3)/Ge ohmic-contact interface on the Seebeck coefficient of the Mn(5)Ge(3)/Ge bilayer

Thermoelectricity is a well-known effect that can be used to convert heat energy into electrical energy. However, the yield of this conversion is still low compared to current photovoltaic technology. It is limited by the intrinsic properties of materials, leading to intensive materials science inve...

Descripción completa

Detalles Bibliográficos
Autores principales: Portavoce, Alain, Hassak, Siham, Bertoglio, Maxime
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10547773/
https://www.ncbi.nlm.nih.gov/pubmed/37789090
http://dx.doi.org/10.1038/s41598-023-43843-y
Descripción
Sumario:Thermoelectricity is a well-known effect that can be used to convert heat energy into electrical energy. However, the yield of this conversion is still low compared to current photovoltaic technology. It is limited by the intrinsic properties of materials, leading to intensive materials science investigations for the design of efficient thermoelectric (TE) materials. Interface engineering was shown to be a valuable solution for improving materials’ TE properties, supporting the development of multiphase TE materials. In particular, interfaces have been suggested to promote the increase of the Seebeck coefficient of materials without significantly impacting their electrical conductivity through the so-called energy filtering effect. This work aims at determining experimentally the effect of a metal/semiconductor interface exhibiting an ohmic character on the effective Seebeck coefficient of multiphase materials, focusing on the n-type Mn(5)Ge(3)/p-type Ge interface. This interface is shown not to contribute to carrier transport, but to contribute to carrier concentration filtering due to carrier injection or recombination. The Seebeck coefficient of the bi-phase material is shown to be dependent on the direction carriers are crossing the interface. The interface effect mainly results from a modification of charge carrier concentrations in the semiconductor.