Cargando…

Size-driven parr-smolt transformation in masu salmon (Oncorhynchus masou)

Anadromous salmonids exhibit partial migration, where some individuals within a population migrate down to the ocean through complex interactions between body size and photoperiod. This study aimed to integrate the ontogenetic and seasonal patterns of smoltification, a series of changes for future m...

Descripción completa

Detalles Bibliográficos
Autores principales: Ugachi, Yuki, Kitade, Haruka, Takahashi, Eisuke, Suzuki, Shotaro, Hayashi, Mizuki, Yamada, Taiga, Cui, Wenda, Shimizu, Munetaka
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10547828/
https://www.ncbi.nlm.nih.gov/pubmed/37789097
http://dx.doi.org/10.1038/s41598-023-43632-7
Descripción
Sumario:Anadromous salmonids exhibit partial migration, where some individuals within a population migrate down to the ocean through complex interactions between body size and photoperiod. This study aimed to integrate the ontogenetic and seasonal patterns of smoltification, a series of changes for future marine life, in a strain of masu salmon (Oncorhynchus masou). Spring smoltification, as evidenced by the activation of gill Na(+),K(+)-ATPase (NKA), was induced during winter under an advanced photoperiod. In addition, juveniles showed an additional peak in gill NKA activity in August regardless of the photoperiod. When juvenile masu salmon were subjected to feeding manipulations during the first spring/summer, only fish exceeding a fork length of 12 cm exhibited an increased gill NKA activity. We tested whether size-driven smoltification required a long-day period by exposing juveniles to a constant short-day length (9-h light and 15-h dark) from January to November. Juveniles under short-day conditions exceeded 12 cm in June but showed no signs of smoltification. Thus, masu salmon undergo photoperiod-limited, size-driven smoltification during the first summer and size-limited, photoperiod-driven smoltification the following spring. The findings of the present study provide a framework for further elucidation of the physiological mechanisms underlying partial migration in salmonids.