Cargando…
Quantifying physiological trait variation with automated hyperspectral imaging in rice
Advancements in hyperspectral imaging (HSI) together with the establishment of dedicated plant phenotyping facilities worldwide have enabled high-throughput collection of plant spectral images with the aim of inferring target phenotypes. Here, we test the utility of HSI-derived canopy data, which we...
Autores principales: | Ting, To-Chia, Souza, Augusto C. M., Imel, Rachel K., Guadagno, Carmela R., Hoagland, Chris, Yang, Yang, Wang, Diane R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10548215/ https://www.ncbi.nlm.nih.gov/pubmed/37799551 http://dx.doi.org/10.3389/fpls.2023.1229161 |
Ejemplares similares
-
Estimating the rice nitrogen nutrition index based on hyperspectral transform technology
por: Yu, Fenghua, et al.
Publicado: (2023) -
Hyperspectral reflectance and agro-physiological traits for field identification of salt-tolerant wheat genotypes using the genotype by yield*trait biplot technique
por: Elfanah, Ahmed M. S., et al.
Publicado: (2023) -
Classifying cadmium contaminated leafy vegetables using hyperspectral imaging and machine learning
por: Souza, Augusto, et al.
Publicado: (2022) -
Multi-Species Prediction of Physiological Traits with Hyperspectral Modeling
por: Lin, Meng-Yang, et al.
Publicado: (2022) -
Evaluation of rice bacterial blight severity from lab to field with hyperspectral imaging technique
por: Bai, Xiulin, et al.
Publicado: (2022)