Cargando…
Charge-Dependent Metastable Dissociations of Multiply Charged Decafluorobiphenyl Formed by Femtosecond Laser Pulses
Femtosecond laser ionization is a unique means to produce multiply charged organic molecules in the gas phase. The charge-dependent chemical reactions of such electron-deficient molecules are interesting from both fundamental and applied scientific perspectives. We have reported the production of qu...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Mass Spectrometry Society of Japan
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10548501/ https://www.ncbi.nlm.nih.gov/pubmed/37799935 http://dx.doi.org/10.5702/massspectrometry.A0130 |
Sumario: | Femtosecond laser ionization is a unique means to produce multiply charged organic molecules in the gas phase. The charge-dependent chemical reactions of such electron-deficient molecules are interesting from both fundamental and applied scientific perspectives. We have reported the production of quadruply charged perfluoroaromatics; however, they were so stable that we cannot obtain information about their chemical reactions. In general, it might be difficult to realize the conflicting objectives of observing multiply charged molecular ion themselves and their metastable dissociations. In this study, we report the first example showing metastable dissociations of several charge states within the measurable time range of a time-of-flight mass spectrometer. Metastable dissociations were analyzed by selecting a precursor ion with a Bradbury–Nielsen ion gate followed by time-of-flight analysis using a reflectron. We obtained qualitative information that triply and quadruply charged decafluorobiphenyl survived at least in the acceleration region but completely decomposed before entering a reflectron. In contrast, three dissociation channels for singly and one for doubly charged molecular ions were discriminated by a reflectron and determined with the help of ion trajectory simulations. |
---|