Cargando…
The rise of automated curiosity-driven discoveries in chemistry
The quest for generating novel chemistry knowledge is critical in scientific advancement, and machine learning (ML) has emerged as an asset in this pursuit. Through interpolation among learned patterns, ML can tackle tasks that were previously deemed demanding to machines. This distinctive capacity...
Autores principales: | Bustillo, Latimah, Laino, Teodoro, Rodrigues, Tiago |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10548516/ https://www.ncbi.nlm.nih.gov/pubmed/37799997 http://dx.doi.org/10.1039/d3sc03367h |
Ejemplares similares
-
A focus on the use of real-world datasets for yield prediction
por: Bustillo, Latimah, et al.
Publicado: (2023) -
Limitations of representation learning in small molecule property prediction
por: Dias, Ana Laura, et al.
Publicado: (2023) -
The rise to dominance of genetic model organisms and the decline of curiosity-driven organismal research
por: Farris, Sarah M.
Publicado: (2020) -
“Found in Translation”: predicting outcomes of complex organic chemistry reactions using neural sequence-to-sequence models
por: Schwaller, Philippe, et al.
Publicado: (2018) -
Editorial: Frontiers in Chemistry: rising stars 2022
por: Brites, Carlos D. S., et al.
Publicado: (2023)