Cargando…
PB-LNet: a model for predicting pathological subtypes of pulmonary nodules on CT images
OBJECTIVE: To investigate the correlation between CT imaging features and pathological subtypes of pulmonary nodules and construct a prediction model using deep learning. METHODS: We collected information of patients with pulmonary nodules treated by surgery and the reference standard for diagnosis...
Autores principales: | Zhang, Yuchong, Qu, Hui, Tian, Yumeng, Na, Fangjian, Yan, Jinshan, Wu, Ying, Cui, Xiaoyu, Li, Zhi, Zhao, Mingfang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10548640/ https://www.ncbi.nlm.nih.gov/pubmed/37789252 http://dx.doi.org/10.1186/s12885-023-11364-6 |
Ejemplares similares
-
Centralized Lung Nodule Management at A Veterans Hospital Using A Multidisciplinary Lung Nodule Evaluation Team (LNET)
por: WRIGHTSON, William R., et al.
Publicado: (2018) -
E(2)LNet: An Efficient and Effective Lightweight Network for Panoramic Depth Estimation
por: Xu, Jiayue, et al.
Publicado: (2023) -
Solitary Pulmonary Inflammatory Nodule: CT Features and Pathological Findings
por: Xiao, Yun-Dan, et al.
Publicado: (2021) -
Pulmonary Benign Ground-Glass Nodules: CT Features and Pathological Findings
por: Li, Wang-Jia, et al.
Publicado: (2021) -
TheLNet270v1 – A Novel Deep-Network Architecture for the Automatic Classification of Thermal Images for Greenhouse Plants
por: Islam, Md. Parvez, et al.
Publicado: (2021)