Cargando…

ScaffoldGVAE: scaffold generation and hopping of drug molecules via a variational autoencoder based on multi-view graph neural networks

In recent years, drug design has been revolutionized by the application of deep learning techniques, and molecule generation is a crucial aspect of this transformation. However, most of the current deep learning approaches do not explicitly consider and apply scaffold hopping strategy when performin...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Chao, Li, Song, Yang, Chenxing, Chen, Jun, Xiong, Yi, Fan, Guisheng, Liu, Hao, Hong, Liang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10548653/
https://www.ncbi.nlm.nih.gov/pubmed/37794460
http://dx.doi.org/10.1186/s13321-023-00766-0
Descripción
Sumario:In recent years, drug design has been revolutionized by the application of deep learning techniques, and molecule generation is a crucial aspect of this transformation. However, most of the current deep learning approaches do not explicitly consider and apply scaffold hopping strategy when performing molecular generation. In this work, we propose ScaffoldGVAE, a variational autoencoder based on multi-view graph neural networks, for scaffold generation and scaffold hopping of drug molecules. The model integrates several important components, such as node-central and edge-central message passing, side-chain embedding, and Gaussian mixture distribution of scaffolds. To assess the efficacy of our model, we conduct a comprehensive evaluation and comparison with baseline models based on seven general generative model evaluation metrics and four scaffold hopping generative model evaluation metrics. The results demonstrate that ScaffoldGVAE can explore the unseen chemical space and generate novel molecules distinct from known compounds. Especially, the scaffold hopped molecules generated by our model are validated by the evaluation of GraphDTA, LeDock, and MM/GBSA. The case study of generating inhibitors of LRRK2 for the treatment of PD further demonstrates the effectiveness of ScaffoldGVAE in generating novel compounds through scaffold hopping. This novel approach can also be applied to other protein targets of various diseases, thereby contributing to the future development of new drugs. Source codes and data are available at https://github.com/ecust-hc/ScaffoldGVAE. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13321-023-00766-0.