Cargando…
Percutaneous core-needle biopsy before and immediately after coaxial microwave ablation in solid non-small cell lung cancer: the comparison of genomic testing from specimens
PURPOSE: To compare the genomic testing based on specimens obtained from percutaneous core-needle biopsy (CNB) before and immediately after coaxial microwave ablation (MWA) in solid non-small cell lung cancer (NSCLC), and to investigate the diagnostic performance of CNB immediately after coaxial MWA...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10548670/ https://www.ncbi.nlm.nih.gov/pubmed/37789413 http://dx.doi.org/10.1186/s40644-023-00610-6 |
Sumario: | PURPOSE: To compare the genomic testing based on specimens obtained from percutaneous core-needle biopsy (CNB) before and immediately after coaxial microwave ablation (MWA) in solid non-small cell lung cancer (NSCLC), and to investigate the diagnostic performance of CNB immediately after coaxial MWA in solid NSCLC. METHODS: Coaxial MWA and CNB were performed for NSCLC patients, with a power of 30 or 40 watts (W) in MWA between the pre- and post-ablation CNB, followed by continuous ablation after the second CNB on demand. The paired specimens derived from the same patient were compared for pathological diagnosis and genomic testing. DNA/RNA extracted from the paired specimens were also compared. RESULTS: A total of 33 NSCLC patients with solid lesions were included. There were two patients (6.1%) without atypical cells and three patients (9.1%) who had the technical failure of genomic testing in post-ablation CNB. The concordance rate of pathological diagnosis between the twice CNB was 93.9% (kappa = 0.852), while that of genomic testing was 90.9% (kappa = 0.891). For the comparisons of DNA/RNA extracted from pre- and post-ablation CNB in 30 patients, no significant difference was found when the MWA between twice CNB has a power of 30 or 40 W and ablation time within five minutes (P = 0.174). CONCLUSIONS: If the pre-ablation CNB presented with a high risk of pneumothorax or hemorrhage, the post-ablation CNB could be performed to achieve accurate pathological diagnosis and genomic testing and the maximum effect of ablation, which might allow for the diagnosis of genomic testing in 90.9% of solid NSCLC. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40644-023-00610-6. |
---|