Cargando…
Challenges in the real world use of classification accuracy metrics: From recall and precision to the Matthews correlation coefficient
The accuracy of a classification is fundamental to its interpretation, use and ultimately decision making. Unfortunately, the apparent accuracy assessed can differ greatly from the true accuracy. Mis-estimation of classification accuracy metrics and associated mis-interpretations are often due to va...
Autor principal: | Foody, Giles M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10550141/ https://www.ncbi.nlm.nih.gov/pubmed/37792898 http://dx.doi.org/10.1371/journal.pone.0291908 |
Ejemplares similares
-
Optimal classifier for imbalanced data using Matthews Correlation Coefficient metric
por: Boughorbel, Sabri, et al.
Publicado: (2017) -
The Matthews correlation coefficient (MCC) should replace the ROC AUC as the standard metric for assessing binary classification
por: Chicco, Davide, et al.
Publicado: (2023) -
The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation
por: Chicco, Davide, et al.
Publicado: (2020) -
An Invitation to Greater Use of Matthews Correlation Coefficient in Robotics and Artificial Intelligence
por: Chicco, Davide, et al.
Publicado: (2022) -
The Matthews correlation coefficient (MCC) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation
por: Chicco, Davide, et al.
Publicado: (2021)