Cargando…
Simulation-based inference for efficient identification of generative models in computational connectomics
Recent advances in connectomics research enable the acquisition of increasing amounts of data about the connectivity patterns of neurons. How can we use this wealth of data to efficiently derive and test hypotheses about the principles underlying these patterns? A common approach is to simulate neur...
Autores principales: | Boelts, Jan, Harth, Philipp, Gao, Richard, Udvary, Daniel, Yáñez, Felipe, Baum, Daniel, Hege, Hans-Christian, Oberlaender, Marcel, Macke, Jakob H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10550169/ https://www.ncbi.nlm.nih.gov/pubmed/37738260 http://dx.doi.org/10.1371/journal.pcbi.1011406 |
Ejemplares similares
-
Generation of dense statistical connectomes from sparse morphological data
por: Egger, Robert, et al.
Publicado: (2014) -
The impact of neuron morphology on cortical network architecture
por: Udvary, Daniel, et al.
Publicado: (2022) -
Flexible and efficient simulation-based inference for models of decision-making
por: Boelts, Jan, et al.
Publicado: (2022) -
Cell Type-Specific Structural Organization of the Six Layers in Rat Barrel Cortex
por: Narayanan, Rajeevan T., et al.
Publicado: (2017) -
EM connectomics reveals axonal target variation in a sequence-generating network
por: Kornfeld, Jörgen, et al.
Publicado: (2017)