Cargando…
Effect of carrier yeast RNAs in the detection of SARS-CoV-2 by RT-LAMP
The COVID-19 pandemic caused by SARS-CoV-2 has underscored the need for rapid and accurate diagnostic methods. Reverse Transcription Loop-Mediated Isothermal Amplification (RT-LAMP) has emerged as a promising molecular tool in least developed countries due to its simplicity, speed, and sensitivity....
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Caltech Library
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10550381/ https://www.ncbi.nlm.nih.gov/pubmed/37799204 http://dx.doi.org/10.17912/micropub.biology.000979 |
Sumario: | The COVID-19 pandemic caused by SARS-CoV-2 has underscored the need for rapid and accurate diagnostic methods. Reverse Transcription Loop-Mediated Isothermal Amplification (RT-LAMP) has emerged as a promising molecular tool in least developed countries due to its simplicity, speed, and sensitivity. Nevertheless, reliable SARS-CoV-2 detection can be challenged by the chain custody of the samples. In this context, carrier RNA can act as a preservative. In this study, we explored the potential of yeast total and transference RNA (tRNA) in the SARS-CoV-2 RT-LAMP. We have found that most optimal conditions are reached with 1 μg/μL tRNA in the RT-LAMP reaction. |
---|