Cargando…
Detecting changes in the performance of a clinical machine learning tool over time
BACKGROUND: Excessive use of blood cultures (BCs) in Emergency Departments (EDs) results in low yields and high contamination rates, associated with increased antibiotic use and unnecessary diagnostics. Our team previously developed and validated a machine learning model to predict BC outcomes and e...
Autores principales: | Schinkel, Michiel, Boerman, Anneroos W., Paranjape, Ketan, Wiersinga, W. Joost, Nanayakkara, Prabath W.B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10550508/ https://www.ncbi.nlm.nih.gov/pubmed/37793210 http://dx.doi.org/10.1016/j.ebiom.2023.104823 |
Ejemplares similares
-
Embracing cohort heterogeneity in clinical machine learning development: a step toward generalizable models
por: Schinkel, Michiel, et al.
Publicado: (2023) -
Diagnostic stewardship for blood cultures in the emergency department: A multicenter validation and prospective evaluation of a machine learning prediction tool
por: Schinkel, Michiel, et al.
Publicado: (2022) -
Sepsis Performance Improvement Programs: From Evidence Toward Clinical Implementation
por: Schinkel, Michiel, et al.
Publicado: (2022) -
Towards Understanding the Effective Use of Antibiotics for Sepsis
por: Schinkel, Michiel, et al.
Publicado: (2021) -
What Sepsis Researchers Can Learn from COVID-19
por: Schinkel, Michiel, et al.
Publicado: (2021)