Cargando…

Impact of occlusal proprioception on static postural balance

Conflicting results on the effects of occlusal proprioceptive information on standing sway have been reported in the literature, partly due to the heterogeneity of the occlusal criterion studied and the experimental protocol used. In this study, occlusal functions, different mandibular positions and...

Descripción completa

Detalles Bibliográficos
Autores principales: Giraudeau, Anne, Nicol, Caroline, Macchi, Robin, Coyle, Thelma, Mesure, Serge, Berdha, Kelly, Orthlieb, Jean-Daniel, Barthèlemy, Joëlle
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10550569/
https://www.ncbi.nlm.nih.gov/pubmed/37800066
http://dx.doi.org/10.1016/j.heliyon.2023.e20309
Descripción
Sumario:Conflicting results on the effects of occlusal proprioceptive information on standing sway have been reported in the literature, partly due to the heterogeneity of the occlusal criterion studied and the experimental protocol used. In this study, occlusal functions, different mandibular positions and visual conditions were used to investigate the involvement of occlusal proprioception information in static postural balance. Postural adjustments of 26 healthy young adults, divided into Class I malocclusion and Class I normocclusion groups, were studied in upright position, in five mandibular positions (1 free, 2 centric and 2 eccentric), with and without vision. Due to different reported test durations, postural parameters were examined for the first and last halves of the 51.2 s acquisition time. A permutation ANOVA with 4 factors was used: group, mandibular position, vision, time window. Mean length of CoP displacement was shorter with vision (ES = 0.30) and more affected by vision loss in the free than in the intercuspal mandibular position (ES = 0.76 vs. 0.39), which has more tooth contacts. The malocclusion group was more affected by vision loss (ES = 0.64). Unexpectedly, with vision, the mean length was smaller in one eccentric occlusion side compared to the other (ES = 0.51), but independent of the left or right side, and more affected by vision loss (ES = 1.04 vs. ES = 0.71). The first-time window of the acquisition time, i.e. 25.6 s, was sufficient to demonstrate the impact of dental occlusion, except for the sway area. Comparison of the two visual conditions was informative. With vision, the weight of occlusal proprioception was not strictly related to occlusal characteristics (number of teeth in contact; centered or eccentric mandibular position), and it was asymmetrical. Without vision, the lack of difference between groups and mandibular positions suggested a sensory reweighting, probably to limit postural disturbance.