Cargando…
Removing non-nuclei information from histopathological images: A preprocessing step towards improving nuclei segmentation methods
Disease interpretation by computer-aided diagnosis systems in digital pathology depends on reliable detection and segmentation of nuclei in hematoxylin and eosin (HE) images. These 2 tasks are challenging since appearance of both cell nuclei and background structures are very variable. This paper pr...
Autores principales: | Moncayo, Ricardo, Martel, Anne L., Romero, Eduardo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10550762/ https://www.ncbi.nlm.nih.gov/pubmed/37811335 http://dx.doi.org/10.1016/j.jpi.2023.100315 |
Ejemplares similares
-
Automated Segmentation of Nuclei in Breast Cancer Histopathology Images
por: Paramanandam, Maqlin, et al.
Publicado: (2016) -
Segmentation of Heavily Clustered Nuclei from Histopathological Images
por: Abdolhoseini, Mahmoud, et al.
Publicado: (2019) -
An automatic nuclei segmentation method based on deep convolutional neural networks for histopathology images
por: Jung, Hwejin, et al.
Publicado: (2019) -
Automatic Nuclei Segmentation in H&E Stained Breast Cancer Histopathology Images
por: Veta, Mitko, et al.
Publicado: (2013) -
Dataset of segmented nuclei in hematoxylin and eosin stained histopathology images of ten cancer types
por: Hou, Le, et al.
Publicado: (2020)