Cargando…

A foundation model for generalizable disease detection from retinal images

Medical artificial intelligence (AI) offers great potential for recognizing signs of health conditions in retinal images and expediting the diagnosis of eye diseases and systemic disorders(1). However, the development of AI models requires substantial annotation and models are usually task-specific...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Yukun, Chia, Mark A., Wagner, Siegfried K., Ayhan, Murat S., Williamson, Dominic J., Struyven, Robbert R., Liu, Timing, Xu, Moucheng, Lozano, Mateo G., Woodward-Court, Peter, Kihara, Yuka, Altmann, Andre, Lee, Aaron Y., Topol, Eric J., Denniston, Alastair K., Alexander, Daniel C., Keane, Pearse A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10550819/
https://www.ncbi.nlm.nih.gov/pubmed/37704728
http://dx.doi.org/10.1038/s41586-023-06555-x
_version_ 1785115632754229248
author Zhou, Yukun
Chia, Mark A.
Wagner, Siegfried K.
Ayhan, Murat S.
Williamson, Dominic J.
Struyven, Robbert R.
Liu, Timing
Xu, Moucheng
Lozano, Mateo G.
Woodward-Court, Peter
Kihara, Yuka
Altmann, Andre
Lee, Aaron Y.
Topol, Eric J.
Denniston, Alastair K.
Alexander, Daniel C.
Keane, Pearse A.
author_facet Zhou, Yukun
Chia, Mark A.
Wagner, Siegfried K.
Ayhan, Murat S.
Williamson, Dominic J.
Struyven, Robbert R.
Liu, Timing
Xu, Moucheng
Lozano, Mateo G.
Woodward-Court, Peter
Kihara, Yuka
Altmann, Andre
Lee, Aaron Y.
Topol, Eric J.
Denniston, Alastair K.
Alexander, Daniel C.
Keane, Pearse A.
author_sort Zhou, Yukun
collection PubMed
description Medical artificial intelligence (AI) offers great potential for recognizing signs of health conditions in retinal images and expediting the diagnosis of eye diseases and systemic disorders(1). However, the development of AI models requires substantial annotation and models are usually task-specific with limited generalizability to different clinical applications(2). Here, we present RETFound, a foundation model for retinal images that learns generalizable representations from unlabelled retinal images and provides a basis for label-efficient model adaptation in several applications. Specifically, RETFound is trained on 1.6 million unlabelled retinal images by means of self-supervised learning and then adapted to disease detection tasks with explicit labels. We show that adapted RETFound consistently outperforms several comparison models in the diagnosis and prognosis of sight-threatening eye diseases, as well as incident prediction of complex systemic disorders such as heart failure and myocardial infarction with fewer labelled data. RETFound provides a generalizable solution to improve model performance and alleviate the annotation workload of experts to enable broad clinical AI applications from retinal imaging.
format Online
Article
Text
id pubmed-10550819
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-105508192023-10-06 A foundation model for generalizable disease detection from retinal images Zhou, Yukun Chia, Mark A. Wagner, Siegfried K. Ayhan, Murat S. Williamson, Dominic J. Struyven, Robbert R. Liu, Timing Xu, Moucheng Lozano, Mateo G. Woodward-Court, Peter Kihara, Yuka Altmann, Andre Lee, Aaron Y. Topol, Eric J. Denniston, Alastair K. Alexander, Daniel C. Keane, Pearse A. Nature Article Medical artificial intelligence (AI) offers great potential for recognizing signs of health conditions in retinal images and expediting the diagnosis of eye diseases and systemic disorders(1). However, the development of AI models requires substantial annotation and models are usually task-specific with limited generalizability to different clinical applications(2). Here, we present RETFound, a foundation model for retinal images that learns generalizable representations from unlabelled retinal images and provides a basis for label-efficient model adaptation in several applications. Specifically, RETFound is trained on 1.6 million unlabelled retinal images by means of self-supervised learning and then adapted to disease detection tasks with explicit labels. We show that adapted RETFound consistently outperforms several comparison models in the diagnosis and prognosis of sight-threatening eye diseases, as well as incident prediction of complex systemic disorders such as heart failure and myocardial infarction with fewer labelled data. RETFound provides a generalizable solution to improve model performance and alleviate the annotation workload of experts to enable broad clinical AI applications from retinal imaging. Nature Publishing Group UK 2023-09-13 2023 /pmc/articles/PMC10550819/ /pubmed/37704728 http://dx.doi.org/10.1038/s41586-023-06555-x Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Zhou, Yukun
Chia, Mark A.
Wagner, Siegfried K.
Ayhan, Murat S.
Williamson, Dominic J.
Struyven, Robbert R.
Liu, Timing
Xu, Moucheng
Lozano, Mateo G.
Woodward-Court, Peter
Kihara, Yuka
Altmann, Andre
Lee, Aaron Y.
Topol, Eric J.
Denniston, Alastair K.
Alexander, Daniel C.
Keane, Pearse A.
A foundation model for generalizable disease detection from retinal images
title A foundation model for generalizable disease detection from retinal images
title_full A foundation model for generalizable disease detection from retinal images
title_fullStr A foundation model for generalizable disease detection from retinal images
title_full_unstemmed A foundation model for generalizable disease detection from retinal images
title_short A foundation model for generalizable disease detection from retinal images
title_sort foundation model for generalizable disease detection from retinal images
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10550819/
https://www.ncbi.nlm.nih.gov/pubmed/37704728
http://dx.doi.org/10.1038/s41586-023-06555-x
work_keys_str_mv AT zhouyukun afoundationmodelforgeneralizablediseasedetectionfromretinalimages
AT chiamarka afoundationmodelforgeneralizablediseasedetectionfromretinalimages
AT wagnersiegfriedk afoundationmodelforgeneralizablediseasedetectionfromretinalimages
AT ayhanmurats afoundationmodelforgeneralizablediseasedetectionfromretinalimages
AT williamsondominicj afoundationmodelforgeneralizablediseasedetectionfromretinalimages
AT struyvenrobbertr afoundationmodelforgeneralizablediseasedetectionfromretinalimages
AT liutiming afoundationmodelforgeneralizablediseasedetectionfromretinalimages
AT xumoucheng afoundationmodelforgeneralizablediseasedetectionfromretinalimages
AT lozanomateog afoundationmodelforgeneralizablediseasedetectionfromretinalimages
AT woodwardcourtpeter afoundationmodelforgeneralizablediseasedetectionfromretinalimages
AT kiharayuka afoundationmodelforgeneralizablediseasedetectionfromretinalimages
AT afoundationmodelforgeneralizablediseasedetectionfromretinalimages
AT altmannandre afoundationmodelforgeneralizablediseasedetectionfromretinalimages
AT leeaarony afoundationmodelforgeneralizablediseasedetectionfromretinalimages
AT topolericj afoundationmodelforgeneralizablediseasedetectionfromretinalimages
AT dennistonalastairk afoundationmodelforgeneralizablediseasedetectionfromretinalimages
AT alexanderdanielc afoundationmodelforgeneralizablediseasedetectionfromretinalimages
AT keanepearsea afoundationmodelforgeneralizablediseasedetectionfromretinalimages
AT zhouyukun foundationmodelforgeneralizablediseasedetectionfromretinalimages
AT chiamarka foundationmodelforgeneralizablediseasedetectionfromretinalimages
AT wagnersiegfriedk foundationmodelforgeneralizablediseasedetectionfromretinalimages
AT ayhanmurats foundationmodelforgeneralizablediseasedetectionfromretinalimages
AT williamsondominicj foundationmodelforgeneralizablediseasedetectionfromretinalimages
AT struyvenrobbertr foundationmodelforgeneralizablediseasedetectionfromretinalimages
AT liutiming foundationmodelforgeneralizablediseasedetectionfromretinalimages
AT xumoucheng foundationmodelforgeneralizablediseasedetectionfromretinalimages
AT lozanomateog foundationmodelforgeneralizablediseasedetectionfromretinalimages
AT woodwardcourtpeter foundationmodelforgeneralizablediseasedetectionfromretinalimages
AT kiharayuka foundationmodelforgeneralizablediseasedetectionfromretinalimages
AT foundationmodelforgeneralizablediseasedetectionfromretinalimages
AT altmannandre foundationmodelforgeneralizablediseasedetectionfromretinalimages
AT leeaarony foundationmodelforgeneralizablediseasedetectionfromretinalimages
AT topolericj foundationmodelforgeneralizablediseasedetectionfromretinalimages
AT dennistonalastairk foundationmodelforgeneralizablediseasedetectionfromretinalimages
AT alexanderdanielc foundationmodelforgeneralizablediseasedetectionfromretinalimages
AT keanepearsea foundationmodelforgeneralizablediseasedetectionfromretinalimages