Cargando…
A foundation model for generalizable disease detection from retinal images
Medical artificial intelligence (AI) offers great potential for recognizing signs of health conditions in retinal images and expediting the diagnosis of eye diseases and systemic disorders(1). However, the development of AI models requires substantial annotation and models are usually task-specific...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10550819/ https://www.ncbi.nlm.nih.gov/pubmed/37704728 http://dx.doi.org/10.1038/s41586-023-06555-x |
_version_ | 1785115632754229248 |
---|---|
author | Zhou, Yukun Chia, Mark A. Wagner, Siegfried K. Ayhan, Murat S. Williamson, Dominic J. Struyven, Robbert R. Liu, Timing Xu, Moucheng Lozano, Mateo G. Woodward-Court, Peter Kihara, Yuka Altmann, Andre Lee, Aaron Y. Topol, Eric J. Denniston, Alastair K. Alexander, Daniel C. Keane, Pearse A. |
author_facet | Zhou, Yukun Chia, Mark A. Wagner, Siegfried K. Ayhan, Murat S. Williamson, Dominic J. Struyven, Robbert R. Liu, Timing Xu, Moucheng Lozano, Mateo G. Woodward-Court, Peter Kihara, Yuka Altmann, Andre Lee, Aaron Y. Topol, Eric J. Denniston, Alastair K. Alexander, Daniel C. Keane, Pearse A. |
author_sort | Zhou, Yukun |
collection | PubMed |
description | Medical artificial intelligence (AI) offers great potential for recognizing signs of health conditions in retinal images and expediting the diagnosis of eye diseases and systemic disorders(1). However, the development of AI models requires substantial annotation and models are usually task-specific with limited generalizability to different clinical applications(2). Here, we present RETFound, a foundation model for retinal images that learns generalizable representations from unlabelled retinal images and provides a basis for label-efficient model adaptation in several applications. Specifically, RETFound is trained on 1.6 million unlabelled retinal images by means of self-supervised learning and then adapted to disease detection tasks with explicit labels. We show that adapted RETFound consistently outperforms several comparison models in the diagnosis and prognosis of sight-threatening eye diseases, as well as incident prediction of complex systemic disorders such as heart failure and myocardial infarction with fewer labelled data. RETFound provides a generalizable solution to improve model performance and alleviate the annotation workload of experts to enable broad clinical AI applications from retinal imaging. |
format | Online Article Text |
id | pubmed-10550819 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-105508192023-10-06 A foundation model for generalizable disease detection from retinal images Zhou, Yukun Chia, Mark A. Wagner, Siegfried K. Ayhan, Murat S. Williamson, Dominic J. Struyven, Robbert R. Liu, Timing Xu, Moucheng Lozano, Mateo G. Woodward-Court, Peter Kihara, Yuka Altmann, Andre Lee, Aaron Y. Topol, Eric J. Denniston, Alastair K. Alexander, Daniel C. Keane, Pearse A. Nature Article Medical artificial intelligence (AI) offers great potential for recognizing signs of health conditions in retinal images and expediting the diagnosis of eye diseases and systemic disorders(1). However, the development of AI models requires substantial annotation and models are usually task-specific with limited generalizability to different clinical applications(2). Here, we present RETFound, a foundation model for retinal images that learns generalizable representations from unlabelled retinal images and provides a basis for label-efficient model adaptation in several applications. Specifically, RETFound is trained on 1.6 million unlabelled retinal images by means of self-supervised learning and then adapted to disease detection tasks with explicit labels. We show that adapted RETFound consistently outperforms several comparison models in the diagnosis and prognosis of sight-threatening eye diseases, as well as incident prediction of complex systemic disorders such as heart failure and myocardial infarction with fewer labelled data. RETFound provides a generalizable solution to improve model performance and alleviate the annotation workload of experts to enable broad clinical AI applications from retinal imaging. Nature Publishing Group UK 2023-09-13 2023 /pmc/articles/PMC10550819/ /pubmed/37704728 http://dx.doi.org/10.1038/s41586-023-06555-x Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Zhou, Yukun Chia, Mark A. Wagner, Siegfried K. Ayhan, Murat S. Williamson, Dominic J. Struyven, Robbert R. Liu, Timing Xu, Moucheng Lozano, Mateo G. Woodward-Court, Peter Kihara, Yuka Altmann, Andre Lee, Aaron Y. Topol, Eric J. Denniston, Alastair K. Alexander, Daniel C. Keane, Pearse A. A foundation model for generalizable disease detection from retinal images |
title | A foundation model for generalizable disease detection from retinal images |
title_full | A foundation model for generalizable disease detection from retinal images |
title_fullStr | A foundation model for generalizable disease detection from retinal images |
title_full_unstemmed | A foundation model for generalizable disease detection from retinal images |
title_short | A foundation model for generalizable disease detection from retinal images |
title_sort | foundation model for generalizable disease detection from retinal images |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10550819/ https://www.ncbi.nlm.nih.gov/pubmed/37704728 http://dx.doi.org/10.1038/s41586-023-06555-x |
work_keys_str_mv | AT zhouyukun afoundationmodelforgeneralizablediseasedetectionfromretinalimages AT chiamarka afoundationmodelforgeneralizablediseasedetectionfromretinalimages AT wagnersiegfriedk afoundationmodelforgeneralizablediseasedetectionfromretinalimages AT ayhanmurats afoundationmodelforgeneralizablediseasedetectionfromretinalimages AT williamsondominicj afoundationmodelforgeneralizablediseasedetectionfromretinalimages AT struyvenrobbertr afoundationmodelforgeneralizablediseasedetectionfromretinalimages AT liutiming afoundationmodelforgeneralizablediseasedetectionfromretinalimages AT xumoucheng afoundationmodelforgeneralizablediseasedetectionfromretinalimages AT lozanomateog afoundationmodelforgeneralizablediseasedetectionfromretinalimages AT woodwardcourtpeter afoundationmodelforgeneralizablediseasedetectionfromretinalimages AT kiharayuka afoundationmodelforgeneralizablediseasedetectionfromretinalimages AT afoundationmodelforgeneralizablediseasedetectionfromretinalimages AT altmannandre afoundationmodelforgeneralizablediseasedetectionfromretinalimages AT leeaarony afoundationmodelforgeneralizablediseasedetectionfromretinalimages AT topolericj afoundationmodelforgeneralizablediseasedetectionfromretinalimages AT dennistonalastairk afoundationmodelforgeneralizablediseasedetectionfromretinalimages AT alexanderdanielc afoundationmodelforgeneralizablediseasedetectionfromretinalimages AT keanepearsea afoundationmodelforgeneralizablediseasedetectionfromretinalimages AT zhouyukun foundationmodelforgeneralizablediseasedetectionfromretinalimages AT chiamarka foundationmodelforgeneralizablediseasedetectionfromretinalimages AT wagnersiegfriedk foundationmodelforgeneralizablediseasedetectionfromretinalimages AT ayhanmurats foundationmodelforgeneralizablediseasedetectionfromretinalimages AT williamsondominicj foundationmodelforgeneralizablediseasedetectionfromretinalimages AT struyvenrobbertr foundationmodelforgeneralizablediseasedetectionfromretinalimages AT liutiming foundationmodelforgeneralizablediseasedetectionfromretinalimages AT xumoucheng foundationmodelforgeneralizablediseasedetectionfromretinalimages AT lozanomateog foundationmodelforgeneralizablediseasedetectionfromretinalimages AT woodwardcourtpeter foundationmodelforgeneralizablediseasedetectionfromretinalimages AT kiharayuka foundationmodelforgeneralizablediseasedetectionfromretinalimages AT foundationmodelforgeneralizablediseasedetectionfromretinalimages AT altmannandre foundationmodelforgeneralizablediseasedetectionfromretinalimages AT leeaarony foundationmodelforgeneralizablediseasedetectionfromretinalimages AT topolericj foundationmodelforgeneralizablediseasedetectionfromretinalimages AT dennistonalastairk foundationmodelforgeneralizablediseasedetectionfromretinalimages AT alexanderdanielc foundationmodelforgeneralizablediseasedetectionfromretinalimages AT keanepearsea foundationmodelforgeneralizablediseasedetectionfromretinalimages |