Cargando…

Resilienz Kritischer Infrastruktur im Krankenhaus: Kategorisierung und Quantifizierung als Grundlage der Optimierung

BACKGROUND: Critical infrastructure (CRITIS) in hospitals has become the focus of resilience research due to the impact of the COVID-19 pandemic and also the events in Ukraine. This foundational research examines overall contexts, categorizing and quantifying them. Previous research examined limited...

Descripción completa

Detalles Bibliográficos
Autores principales: Hübner, Rico U., Küsel, Cornelia, Oestmann, Jörg W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Medizin 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10550864/
https://www.ncbi.nlm.nih.gov/pubmed/37584731
http://dx.doi.org/10.1007/s00101-023-01318-9
_version_ 1785115642543734784
author Hübner, Rico U.
Küsel, Cornelia
Oestmann, Jörg W.
author_facet Hübner, Rico U.
Küsel, Cornelia
Oestmann, Jörg W.
author_sort Hübner, Rico U.
collection PubMed
description BACKGROUND: Critical infrastructure (CRITIS) in hospitals has become the focus of resilience research due to the impact of the COVID-19 pandemic and also the events in Ukraine. This foundational research examines overall contexts, categorizing and quantifying them. Previous research examined limited scale damage situations with little CRITIS involvement: Worst case studies are missing. The vulnerabilities of the CRITIS of one or more countries will likewise be a prime target for attack in current and future conflicts or criminal extortion, this is especially true in the healthcare sector. Therefore, detailed research with a black swan scenario is necessary in this field. OBJECTIVE: The aim of the study was to create and validate a categorized and weighted model for the self-assessment of the resilience of critical infrastructure in German hospitals at different levels of care before the exemplary scenario of a prolonged supraregional power blackout. MATERIAL AND METHODS: Using an explorative design, experts from 8 hospitals of different care levels performed an expert-based qualitative system analysis to develop, weight and test the model. The resilience index was then calculated using adapted interdependence analyses in a Vester influence matrix. RESULTS: A total of 7 categories and 24 subcategories of hospital CRITIS were identified. There are several key elements: rank 1 of active elements is the emergency power system (E1), and for passive elements, it is the nursing staff (P2). This means that the emergency power system has the greatest impact on all other areas and the nursing staff are most dependent on all others for their work. The most critical elements, because they are most intertwined in the overall system, are the situation center/command staff (Z1) and technical staff (P3), on which the entire system depends. From the weighted individual elements of CRITIS, an overall resilience for a hospital can be calculated (resilience index). The developed model can be used by hospital crisis experts as part of a self-assessment to provide a basis for risk management, financial planning, technical planning, personnel planning or crisis and disaster management. CONCLUSION: The categorization and quantification of critical infrastructure (CRITIS) in hospitals with the aim of resilience documentation and optimization is possible. The model that has been developed allows rapid adaptation to changing initial situations and increases in resilience that can be realized in the short and medium term. Emergency and crisis preparedness is a dynamic process, which has been combined here with the further development of critical infrastructure. Consequently, there can be no final state to be achieved but only a certain best possible framework within which the hospital as a business enterprise can operate. The classification of the categories in the model must also be constantly further developed and adapted to the current status. Once the explorative and qualitative basic research has been completed, it is necessary in a further step to subject the model, which has been validated by experts, to a broader review. Ideally, this will be done using quantitative methods and a significantly larger sample.
format Online
Article
Text
id pubmed-10550864
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Springer Medizin
record_format MEDLINE/PubMed
spelling pubmed-105508642023-10-06 Resilienz Kritischer Infrastruktur im Krankenhaus: Kategorisierung und Quantifizierung als Grundlage der Optimierung Hübner, Rico U. Küsel, Cornelia Oestmann, Jörg W. Anaesthesiologie Originalien BACKGROUND: Critical infrastructure (CRITIS) in hospitals has become the focus of resilience research due to the impact of the COVID-19 pandemic and also the events in Ukraine. This foundational research examines overall contexts, categorizing and quantifying them. Previous research examined limited scale damage situations with little CRITIS involvement: Worst case studies are missing. The vulnerabilities of the CRITIS of one or more countries will likewise be a prime target for attack in current and future conflicts or criminal extortion, this is especially true in the healthcare sector. Therefore, detailed research with a black swan scenario is necessary in this field. OBJECTIVE: The aim of the study was to create and validate a categorized and weighted model for the self-assessment of the resilience of critical infrastructure in German hospitals at different levels of care before the exemplary scenario of a prolonged supraregional power blackout. MATERIAL AND METHODS: Using an explorative design, experts from 8 hospitals of different care levels performed an expert-based qualitative system analysis to develop, weight and test the model. The resilience index was then calculated using adapted interdependence analyses in a Vester influence matrix. RESULTS: A total of 7 categories and 24 subcategories of hospital CRITIS were identified. There are several key elements: rank 1 of active elements is the emergency power system (E1), and for passive elements, it is the nursing staff (P2). This means that the emergency power system has the greatest impact on all other areas and the nursing staff are most dependent on all others for their work. The most critical elements, because they are most intertwined in the overall system, are the situation center/command staff (Z1) and technical staff (P3), on which the entire system depends. From the weighted individual elements of CRITIS, an overall resilience for a hospital can be calculated (resilience index). The developed model can be used by hospital crisis experts as part of a self-assessment to provide a basis for risk management, financial planning, technical planning, personnel planning or crisis and disaster management. CONCLUSION: The categorization and quantification of critical infrastructure (CRITIS) in hospitals with the aim of resilience documentation and optimization is possible. The model that has been developed allows rapid adaptation to changing initial situations and increases in resilience that can be realized in the short and medium term. Emergency and crisis preparedness is a dynamic process, which has been combined here with the further development of critical infrastructure. Consequently, there can be no final state to be achieved but only a certain best possible framework within which the hospital as a business enterprise can operate. The classification of the categories in the model must also be constantly further developed and adapted to the current status. Once the explorative and qualitative basic research has been completed, it is necessary in a further step to subject the model, which has been validated by experts, to a broader review. Ideally, this will be done using quantitative methods and a significantly larger sample. Springer Medizin 2023-08-16 2023 /pmc/articles/PMC10550864/ /pubmed/37584731 http://dx.doi.org/10.1007/s00101-023-01318-9 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access Dieser Artikel wird unter der Creative Commons Namensnennung 4.0 International Lizenz veröffentlicht, welche die Nutzung, Vervielfältigung, Bearbeitung, Verbreitung und Wiedergabe in jeglichem Medium und Format erlaubt, sofern Sie den/die ursprünglichen Autor(en) und die Quelle ordnungsgemäß nennen, einen Link zur Creative Commons Lizenz beifügen und angeben, ob Änderungen vorgenommen wurden. Die in diesem Artikel enthaltenen Bilder und sonstiges Drittmaterial unterliegen ebenfalls der genannten Creative Commons Lizenz, sofern sich aus der Abbildungslegende nichts anderes ergibt. Sofern das betreffende Material nicht unter der genannten Creative Commons Lizenz steht und die betreffende Handlung nicht nach gesetzlichen Vorschriften erlaubt ist, ist für die oben aufgeführten Weiterverwendungen des Materials die Einwilligung des jeweiligen Rechteinhabers einzuholen. Weitere Details zur Lizenz entnehmen Sie bitte der Lizenzinformation auf http://creativecommons.org/licenses/by/4.0/deed.de (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Originalien
Hübner, Rico U.
Küsel, Cornelia
Oestmann, Jörg W.
Resilienz Kritischer Infrastruktur im Krankenhaus: Kategorisierung und Quantifizierung als Grundlage der Optimierung
title Resilienz Kritischer Infrastruktur im Krankenhaus: Kategorisierung und Quantifizierung als Grundlage der Optimierung
title_full Resilienz Kritischer Infrastruktur im Krankenhaus: Kategorisierung und Quantifizierung als Grundlage der Optimierung
title_fullStr Resilienz Kritischer Infrastruktur im Krankenhaus: Kategorisierung und Quantifizierung als Grundlage der Optimierung
title_full_unstemmed Resilienz Kritischer Infrastruktur im Krankenhaus: Kategorisierung und Quantifizierung als Grundlage der Optimierung
title_short Resilienz Kritischer Infrastruktur im Krankenhaus: Kategorisierung und Quantifizierung als Grundlage der Optimierung
title_sort resilienz kritischer infrastruktur im krankenhaus: kategorisierung und quantifizierung als grundlage der optimierung
topic Originalien
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10550864/
https://www.ncbi.nlm.nih.gov/pubmed/37584731
http://dx.doi.org/10.1007/s00101-023-01318-9
work_keys_str_mv AT hubnerricou resilienzkritischerinfrastrukturimkrankenhauskategorisierungundquantifizierungalsgrundlagederoptimierung
AT kuselcornelia resilienzkritischerinfrastrukturimkrankenhauskategorisierungundquantifizierungalsgrundlagederoptimierung
AT oestmannjorgw resilienzkritischerinfrastrukturimkrankenhauskategorisierungundquantifizierungalsgrundlagederoptimierung