Cargando…

Open-loop analog programmable electrochemical memory array

Emerging memories have been developed as new physical infrastructures for hosting neural networks owing to their low-power analog computing characteristics. However, accurately and efficiently programming devices in an analog-valued array is still largely limited by the intrinsic physical non-ideali...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Peng, Liu, Fenghao, Lin, Peng, Li, Peihong, Xiao, Yu, Zhang, Bihua, Pan, Gang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10550916/
https://www.ncbi.nlm.nih.gov/pubmed/37794039
http://dx.doi.org/10.1038/s41467-023-41958-4
Descripción
Sumario:Emerging memories have been developed as new physical infrastructures for hosting neural networks owing to their low-power analog computing characteristics. However, accurately and efficiently programming devices in an analog-valued array is still largely limited by the intrinsic physical non-idealities of the devices, thus hampering their applications in in-situ training of neural networks. Here, we demonstrate a passive electrochemical memory (ECRAM) array with many important characteristics necessary for accurate analog programming. Different image patterns can be open-loop and serially programmed into our ECRAM array, achieving high programming accuracies without any feedback adjustments. The excellent open-loop analog programmability has led us to in-situ train a bilayer neural network and reached software-like classification accuracy of 99.4% to detect poisonous mushrooms. The training capability is further studied in simulation for large-scale neural networks such as VGG-8. Our results present a new solution for implementing learning functions in an artificial intelligence hardware using emerging memories.