Cargando…

Effect of chemical species and temperature on the stability of air nanobubbles

The colloidal stability of air nanobubbles (NBs) was studied at different temperatures (0–30 °C) and in the presence of sulfates, typically found in mining effluents, in a wide range of Na(2)SO(4) concentrations (0.001 to 1 M), along with the effect of surfactants (sodium dodecyl sulfate), chloride...

Descripción completa

Detalles Bibliográficos
Autores principales: Montazeri, Seyed Mohammad, Kalogerakis, Nicolas, Kolliopoulos, Georgios
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10550960/
https://www.ncbi.nlm.nih.gov/pubmed/37794127
http://dx.doi.org/10.1038/s41598-023-43803-6
Descripción
Sumario:The colloidal stability of air nanobubbles (NBs) was studied at different temperatures (0–30 °C) and in the presence of sulfates, typically found in mining effluents, in a wide range of Na(2)SO(4) concentrations (0.001 to 1 M), along with the effect of surfactants (sodium dodecyl sulfate), chloride salts (NaCl), and acid/base reagents at a pH range from 4 to 9. Using a nanobubble generator based on hydrodynamic cavitation, 1.2 × 10(8) bubbles/mL with a typical radius of 84.66 ± 7.88 nm were generated in deionized water. Multiple evidence is provided to prove their presence in suspension, including the Tyndall effect, dynamic light scattering, and nanoparticle size analysis. Zeta potential measurements revealed that NBs are negatively charged even after two months (from − 19.48 ± 1.89 to − 10.13 ± 1.71 mV), suggesting that their stability is due to the negative charge on their surface. NBs were found to be more stable in alkaline solutions compared to acidic ones. Further, low amounts of both chloride and sulfate dissolved salts led to a reduction of the size of NBs. However, when high amounts of dissolved salts are present, NBs are more likely to coalesce, and their size to be increased. Finally, the investigation of the stability of air NBs at low temperatures revealed a non-monotonic relationship between temperature and NBs upon considering water self-ionization and ion mobility. This research aims to open a new frontier towards the application of the highly innovative NBs technology on the treatment of mining, mineral, and metal processing effluents, which are challenging aqueous solutions containing chloride and sulfate species.