Cargando…

Gold nanowire mesh electrode for electromechanical device

Ionic polymer-metal composite (IPMC) actuators were prepared with Nafion film as the ionic polymer and gold nanowire (Au-NW) mesh film as the metal electrodes by hot-pressing, which shortened preparation time within 1 h. As a reference, IPMC actuator consisting of Nafion film and gold foil (Au-foil)...

Descripción completa

Detalles Bibliográficos
Autor principal: Ikeda, Taichi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10551032/
https://www.ncbi.nlm.nih.gov/pubmed/37794230
http://dx.doi.org/10.1038/s41598-023-43960-8
Descripción
Sumario:Ionic polymer-metal composite (IPMC) actuators were prepared with Nafion film as the ionic polymer and gold nanowire (Au-NW) mesh film as the metal electrodes by hot-pressing, which shortened preparation time within 1 h. As a reference, IPMC actuator consisting of Nafion film and gold foil (Au-foil) was also prepared. Au-NW mesh film can be an electrode with thinner (about 150 nm) and lower surface resistivity (about 0.5 Ω sq(−1)) than the conventional electrode prepared by electroless plating. Larger contact area of the Au-NW mesh electrode than the Au-foil electrode resulted in better actuation performance (60% larger peak-to-peak displacement in actuation). It was confirmed that the transformation behavior of Au-NWs differed depending on the external stimuli condition. Namely Au-NWs transformed to Au nanoparticles in the case of the heat stimulus only. Meanwhile, Au-NWs transformed to plates in the case of the heat and pressure stimuli. While higher temperature improved the adhesion of Au-NW mesh electrode to the Nafion surface, it induced the transformation of nanowire to plates. The IPMC actuator that the Au-NW mesh electrodes were hot-pressed at 90 ºC exhibited the highest capacitance and the largest peak-to-peak displacement in actuation. This research expanded the application field of gold nanowires to the electromechanical devices.