Cargando…
Selecting the best optimizers for deep learning–based medical image segmentation
PURPOSE: The goal of this work is to explore the best optimizers for deep learning in the context of medical image segmentation and to provide guidance on how to design segmentation networks with effective optimization strategies. APPROACH: Most successful deep learning networks are trained using tw...
Autores principales: | Mortazi, Aliasghar, Cicek, Vedat, Keles, Elif, Bagci, Ulas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10551178/ https://www.ncbi.nlm.nih.gov/pubmed/37810757 http://dx.doi.org/10.3389/fradi.2023.1175473 |
Ejemplares similares
-
Editorial: Advances in deep learning methods for medical image analysis
por: Suk, Heung-Il, et al.
Publicado: (2023) -
Deep learning image segmentation approaches for malignant bone lesions: a systematic review and meta-analysis
por: Rich, Joseph M., et al.
Publicado: (2023) -
The past, current, and future of neonatal intensive care units with artificial intelligence: a systematic review
por: Keles, Elif, et al.
Publicado: (2023) -
Deep Learning Model With Convolutional Neural Network for Detecting and Segmenting Hepatocellular Carcinoma in CT: A Preliminary Study
por: Duc, Vo Tan, et al.
Publicado: (2022) -
Deep learning-based left ventricular segmentation demonstrates improved performance on respiratory motion-resolved whole-heart reconstructions
por: Yang, Yitong, et al.
Publicado: (2023)