Cargando…
Deep learning analysis on transmission electron microscope imaging of atomic defects in two-dimensional materials
Defects are prevalent in two-dimensional (2D) materials due to thermal equilibrium and processing kinetics. The presence of various defect types can affect material properties significantly. With the development of the advanced transmission electron microscopy (TEM), the property-related structures...
Autores principales: | Gui, Chen, Zhang, Zhihao, Li, Zongyi, Luo, Chen, Xia, Jiang, Wu, Xing, Chu, Junhao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10551659/ https://www.ncbi.nlm.nih.gov/pubmed/37810254 http://dx.doi.org/10.1016/j.isci.2023.107982 |
Ejemplares similares
-
Deep learning based atomic defect detection framework for two-dimensional materials
por: Chen, Fu-Xiang Rikudo, et al.
Publicado: (2023) -
Probing atomic structure of beam-sensitive energy materials in their native states using cryogenic transmission electron microscopes
por: Zhu, Yuanmin, et al.
Publicado: (2021) -
Defects in advanced electronic materials and novel low dimensional structures
por: Chen, Weimin, et al.
Publicado: (2018) -
Atomic-number (Z)-correlated atomic sizes for deciphering electron microscopic molecular images
por: Xing, Junfei, et al.
Publicado: (2022) -
Comprehensive Characterization of Extended Defects in Semiconductor Materials by a Scanning Electron Microscope
por: Hieckmann, Ellen, et al.
Publicado: (2016)