Cargando…
Early detection of tuberculosis using hybrid feature descriptors and deep learning network
PURPOSE: To detect tuberculosis (TB) at an early stage by analyzing chest X-ray images using a deep neural network, and to evaluate the efficacy of proposed model by comparing it with existing studies. MATERIAL AND METHODS: For the study, an open-source X-ray images were used. Dataset consisted of t...
Autores principales: | Verma, Garima, Kumar, Ajay, Dixit, Sushil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Termedia Publishing House
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10551735/ https://www.ncbi.nlm.nih.gov/pubmed/37808172 http://dx.doi.org/10.5114/pjr.2023.131732 |
Ejemplares similares
-
Ensemble learning based automatic detection of tuberculosis in chest X-ray images using hybrid feature descriptors
por: Ayaz, Muhammad, et al.
Publicado: (2021) -
Hybrid Histogram Descriptor: A Fusion Feature Representation for Image Retrieval
por: Feng, Qinghe, et al.
Publicado: (2018) -
A Novel Solution Based on Scale Invariant Feature Transform Descriptors and Deep Learning for the Detection of Suspicious Regions in Mammogram Images
por: Bruno, Alessandro, et al.
Publicado: (2020) -
Automated Detection of Measurements and Their Descriptors in Radiology Reports Using a Hybrid Natural Language Processing Algorithm
por: Bozkurt, Selen, et al.
Publicado: (2019) -
Multifractal Feature Descriptor for Histopathology
por: Atupelage, Chamidu, et al.
Publicado: (2012)