Cargando…

Desialylated Platelet Clearance in the Liver is a Novel Mechanism of Systemic Immunosuppression

Platelets are small, versatile blood cells that are critical for hemostasis/thrombosis. Local platelet accumulation is a known contributor to proinflammation in various disease states. However, the anti-inflammatory/immunosuppressive potential of platelets has been poorly explored. Here, we uncovere...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, June, Karakas, Danielle, Xue, Feng, Chen, Yingyu, Zhu, Guangheng, Yucel, Yeni H., MacParland, Sonya A., Zhang, Haibo, Semple, John W., Freedman, John, Shi, Qizhen, Ni, Heyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AAAS 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10551749/
https://www.ncbi.nlm.nih.gov/pubmed/37808178
http://dx.doi.org/10.34133/research.0236
Descripción
Sumario:Platelets are small, versatile blood cells that are critical for hemostasis/thrombosis. Local platelet accumulation is a known contributor to proinflammation in various disease states. However, the anti-inflammatory/immunosuppressive potential of platelets has been poorly explored. Here, we uncovered, unexpectedly, desialylated platelets (dPLTs) down-regulated immune responses against both platelet-associated and -independent antigen challenges. Utilizing multispectral photoacoustic tomography, we tracked dPLT trafficking to gut vasculature and an exclusive Kupffer cell-mediated dPLT clearance in the liver, a process that we identified to be synergistically dependent on platelet glycoprotein Ibα and hepatic Ashwell–Morell receptor. Mechanistically, Kupffer cell clearance of dPLT potentiated a systemic immunosuppressive state with increased anti-inflammatory cytokines and circulating CD4(+) regulatory T cells, abolishable by Kupffer cell depletion. Last, in a clinically relevant model of hemophilia A, presensitization with dPLT attenuated anti-factor VIII antibody production after factor VIII ( infusion. As platelet desialylation commonly occurs in daily-aged and activated platelets, these findings open new avenues toward understanding immune homeostasis and potentiate the therapeutic potential of dPLT and engineered dPLT transfusions in controlling autoimmune and alloimmune diseases.