Cargando…
Signal processing and machine learning algorithm to classify anaesthesia depth
BACKGROUND: Poor assessment of anaesthetic depth (AD) has led to overdosing or underdosing of the anaesthetic agent, which requires continuous monitoring to avoid complications. The evaluation of the central nervous system activity and autonomic nervous system could provide additional information on...
Autores principales: | Mosquera Dussan, Oscar, Tuta-Quintero, Eduardo, Botero-Rosas, Daniel A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10551974/ https://www.ncbi.nlm.nih.gov/pubmed/37793676 http://dx.doi.org/10.1136/bmjhci-2023-100823 |
Ejemplares similares
-
Classifying Unstable and Stable Walking Patterns Using Electroencephalography Signals and Machine Learning Algorithms
por: Soangra, Rahul, et al.
Publicado: (2023) -
The Challenges of Spirometric Diagnosis of COPD
por: Maldonado-Franco, Adriana, et al.
Publicado: (2023) -
Monitoring the Depth of Anaesthesia
por: Musizza, Bojan, et al.
Publicado: (2010) -
Depth of general anaesthesia monitors
por: Rani, D Devika, et al.
Publicado: (2012) -
Machine Learning Classifiers to Evaluate Data From Gait Analysis With Depth Cameras in Patients With Parkinson’s Disease
por: Muñoz-Ospina, Beatriz, et al.
Publicado: (2022)