Cargando…

Intriguing and Facile Preparation Approach of CdO Nanorod-Based Abundant Chitosan for Symmetric Supercapacitors

[Image: see text] Abundant chitosan was rationally used for the green fabrication of cadmium oxide nanorods (CdO nanorods) owing to its environmentally benign characteristics, bioavailability, low cost, etc. However, the primary unsubstituted amino group of chitosan interacts with the surface of Cd...

Descripción completa

Detalles Bibliográficos
Autores principales: Elmanfaloty, Rania A., Shoueir, Kamel R., Yousif, Bedir
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10552095/
https://www.ncbi.nlm.nih.gov/pubmed/37810675
http://dx.doi.org/10.1021/acsomega.3c02261
Descripción
Sumario:[Image: see text] Abundant chitosan was rationally used for the green fabrication of cadmium oxide nanorods (CdO nanorods) owing to its environmentally benign characteristics, bioavailability, low cost, etc. However, the primary unsubstituted amino group of chitosan interacts with the surface of Cd salt at higher temperatures, resulting in CdO nanorod formation. A one-step hydrothermal technique was adopted in the presence of chitosan. Optical, structural, and morphology techniques characterized CdO nanorods. According to X-ray diffraction crystallography, CdO is well crystallized in the face-centered cubic lattice with an Fm-3m (225) space group. The AC@CdO nanoelectrode demonstrated an outstanding gravimetric capacitance of 320 F g(–1) at a current density of 0.5 A g(–1), nearly three-fold that of ordinary AC electrodes. The AC electrode and the AC@CdO nanoelectrode retain 90 and 93% of their initial specific capacitance after 10,000 galvanostatic charge discharge cycles. The AC@CdO nanoelectrode has a lower equivalent series resistance value than the AC electrode. Moreover, AC@CdO symmetric supercapacitor devices achieve excellent results in terms of specific energy, specific power, and capacitance retention.