Cargando…
Bayesian Covariate-Dependent Gaussian Graphical Models with Varying Structure
We introduce Bayesian Gaussian graphical models with covariates (GGMx), a class of multivariate Gaussian distributions with covariate-dependent sparse precision matrix. We propose a general construction of a functional mapping from the covariate space to the cone of sparse positive definite matrices...
Autores principales: | Ni, Yang, Stingo, Francesco C., Baladandayuthapani, Veerabhadran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10552903/ https://www.ncbi.nlm.nih.gov/pubmed/37799290 |
Ejemplares similares
-
Bayesian graphical models for modern biological applications
por: Ni, Yang, et al.
Publicado: (2021) -
Integrative Bayesian Network Analysis of Genomic Data
por: Ni, Yang, et al.
Publicado: (2014) -
Bayesian variable selection with graphical structure learning: Applications in integrative genomics
por: Kundu, Suprateek, et al.
Publicado: (2018) -
Fast Bayesian inference in large Gaussian graphical models
por: Leday, Gwenaël G. R., et al.
Publicado: (2019) -
Bayesian Disease Classification Using Copy Number Data
por: Guha, Subharup, et al.
Publicado: (2014)