Cargando…
USP5 promotes lipopolysaccharide-induced apoptosis and inflammatory response by stabilizing the TXNIP protein
BACKGROUND: The role of thioredoxin-interacting protein (TXNIP) in lipopolysaccharide-induced liver injury in mice has been reported, but the underlying mechanisms are poorly understood. METHODS: We overexpressed deubiquitinase in cells overexpressing TXNIP and then detected the level of TXNIP to sc...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10553006/ https://www.ncbi.nlm.nih.gov/pubmed/37534934 http://dx.doi.org/10.1097/HC9.0000000000000193 |
Sumario: | BACKGROUND: The role of thioredoxin-interacting protein (TXNIP) in lipopolysaccharide-induced liver injury in mice has been reported, but the underlying mechanisms are poorly understood. METHODS: We overexpressed deubiquitinase in cells overexpressing TXNIP and then detected the level of TXNIP to screen out the deubiquitinase regulating TXNIP; the interaction between TXNIP and deubiquitinase was verified by coimmunoprecipitation. After knockdown of a deubiquitinase and overexpression of TXNIP in Huh7 and HepG2 cells, lipopolysaccharide was used to establish a cellular inflammatory model to explore the role of deubiquitinase and TXNIP in hepatocyte inflammation. RESULTS: In this study, we discovered that ubiquitin-specific protease 5 (USP5) interacts with TXNIP and stabilizes it through deubiquitylation in Huh-7 and HepG2 cells after treatment with lipopolysaccharide. In lipopolysaccharide-treated Huh-7 and HepG2 cells, USP5 knockdown increased cell viability, reduced apoptosis, and decreased the expression of inflammatory factors, including NLRP3, IL-1β, IL-18, ASC, and procaspase-1. Overexpression of TXNIP reversed the phenotype induced by knockdown USP5. CONCLUSIONS: In summary, USP5 promotes lipopolysaccharide-induced apoptosis and inflammatory response by stabilizing the TXNIP protein. |
---|