Cargando…
Benchmarking variational AutoEncoders on cancer transcriptomics data
Deep generative models, such as variational autoencoders (VAE), have gained increasing attention in computational biology due to their ability to capture complex data manifolds which subsequently can be used to achieve better performance in downstream tasks, such as cancer type prediction or subtypi...
Autores principales: | Eltager, Mostafa, Abdelaal, Tamim, Charrout, Mohammed, Mahfouz, Ahmed, Reinders, Marcel J. T., Makrodimitris, Stavros |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10553230/ https://www.ncbi.nlm.nih.gov/pubmed/37796856 http://dx.doi.org/10.1371/journal.pone.0292126 |
Ejemplares similares
-
scMoC: single-cell multi-omics clustering
por: Eltager, Mostafa, et al.
Publicado: (2022) -
Quantum Variational AutoEncoder
por: Vinci, Walter
Publicado: (2018) -
An in-depth comparison of linear and non-linear joint embedding methods for bulk and single-cell multi-omics
por: Makrodimitris, Stavros, et al.
Publicado: (2023) -
Untangling biological factors influencing trajectory inference from single cell data
por: Charrout, Mohammed, et al.
Publicado: (2020) -
Untangling biological factors influencing trajectory inference from single cell data
por: Charrout, Mohammed, et al.
Publicado: (2020)