Cargando…
The combination model of CNN and GCN for machine fault diagnosis
Learning powerful discriminative features is the key for machine fault diagnosis. Most existing methods based on convolutional neural network (CNN) have achieved promising results. However, they primarily focus on global features derived from sample signals and fail to explicitly mine relationships...
Autores principales: | Zhang, Qianqian, Hao, Caiyun, Lv, Zhongwei, Fan, Qiuxia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10553235/ https://www.ncbi.nlm.nih.gov/pubmed/37796950 http://dx.doi.org/10.1371/journal.pone.0292381 |
Ejemplares similares
-
Application of CNN-Based Machine Learning in the Study of Motor Fault Diagnosis
por: Peng, Xiuyan, et al.
Publicado: (2022) -
Semi‐supervised classification of fundus images combined with CNN and GCN
por: Duan, Sixu, et al.
Publicado: (2022) -
Retracted: Application of CNN-Based Machine Learning in the Study of Motor Fault Diagnosis
por: Intelligence and Neuroscience, Computational
Publicado: (2023) -
Machine Fault Detection Using a Hybrid CNN-LSTM Attention-Based Model
por: Borré, Andressa, et al.
Publicado: (2023) -
CNN Hardware Accelerator for Real-Time Bearing Fault Diagnosis
por: Chung, Ching-Che, et al.
Publicado: (2023)