Cargando…
Based on the multi-scale information sharing network of fine-grained attention for agricultural pest detection
It is of great significance to identify the pest species accurately and control it effectively to reduce the loss of agricultural products. The research results of this project will provide theoretical basis for preventing and controlling the spread of pests and reducing the loss of agricultural pro...
Autores principales: | Linfeng, Wang, Yong, Liu, Jiayao, Liu, Yunsheng, Wang, Shipu, Xu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10553313/ https://www.ncbi.nlm.nih.gov/pubmed/37796844 http://dx.doi.org/10.1371/journal.pone.0286732 |
Ejemplares similares
-
Fine-grained classification based on multi-scale pyramid convolution networks
por: Wang, Gaihua, et al.
Publicado: (2021) -
Correlation Matters: Multi-scale Fine-Grained Contextual Information Extraction for Hepatic Tumor Segmentation
por: Pang, Shuchao, et al.
Publicado: (2020) -
AgriPest: A Large-Scale Domain-Specific Benchmark Dataset for Practical Agricultural Pest Detection in the Wild
por: Wang, Rujing, et al.
Publicado: (2021) -
Detection of Rice Pests Based on Self-Attention Mechanism and Multi-Scale Feature Fusion
por: Hu, Yuqi, et al.
Publicado: (2023) -
Crop pest detection by three-scale convolutional neural network with attention
por: Wang, Xuqi, et al.
Publicado: (2023)