Cargando…
An interpretable machine learning model of cross-sectional U.S. county-level obesity prevalence using explainable artificial intelligence
BACKGROUND: There is considerable geographic heterogeneity in obesity prevalence across counties in the United States. Machine learning algorithms accurately predict geographic variation in obesity prevalence, but the models are often uninterpretable and viewed as a black-box. OBJECTIVE: The goal of...
Autor principal: | Allen, Ben |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10553328/ https://www.ncbi.nlm.nih.gov/pubmed/37796874 http://dx.doi.org/10.1371/journal.pone.0292341 |
Ejemplares similares
-
Explainable vs. interpretable artificial intelligence frameworks in oncology
por: Bertsimas, Dimitris, et al.
Publicado: (2023) -
Using Explainable Artificial Intelligence to Discover Interactions in an Ecological Model for Obesity
por: Allen, Ben, et al.
Publicado: (2022) -
Designing an Interpretability-Based Model to Explain the Artificial Intelligence Algorithms in Healthcare
por: Ennab, Mohammad, et al.
Publicado: (2022) -
Explainable artificial intelligence for mental health through transparency and interpretability for understandability
por: Joyce, Dan W., et al.
Publicado: (2023) -
Grocery food taxes and U.S. county obesity and diabetes rates
por: Wang, Lingxiao, et al.
Publicado: (2021)