Cargando…

Did a bot eat your homework? An assessment of the potential impact of bad actors in online administration of preference surveys

BACKGROUND: Online administration of surveys has a number of advantages but can also lead to increased exposure to bad actors (human and non-human bots) who can try to influence the study results or to benefit financially from the survey. We analyze data collected through an online discrete-choice e...

Descripción completa

Detalles Bibliográficos
Autores principales: Gonzalez, Juan Marcos, Grover, Kiran, Leblanc, Thomas W., Reeve, Bryce B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10553355/
https://www.ncbi.nlm.nih.gov/pubmed/37796861
http://dx.doi.org/10.1371/journal.pone.0287766
_version_ 1785116149840609280
author Gonzalez, Juan Marcos
Grover, Kiran
Leblanc, Thomas W.
Reeve, Bryce B.
author_facet Gonzalez, Juan Marcos
Grover, Kiran
Leblanc, Thomas W.
Reeve, Bryce B.
author_sort Gonzalez, Juan Marcos
collection PubMed
description BACKGROUND: Online administration of surveys has a number of advantages but can also lead to increased exposure to bad actors (human and non-human bots) who can try to influence the study results or to benefit financially from the survey. We analyze data collected through an online discrete-choice experiment (DCE) survey to evaluate the likelihood that bad actors can affect the quality of the data collected. METHODS: We developed and fielded a survey instrument that included two sets of DCE questions asking respondents to select their preferred treatments for multiple myeloma therapies. The survey also included questions to assess respondents’ attention while completing the survey and their understanding of the DCE questions. We used a latent-class model to identify a class associated with perverse preferences or high model variance, and the degree to which the quality checks included in the survey were correlated with class membership. Class-membership probabilities for the problematic class were used as weights in a random-parameters logit to recover population-level estimates that minimizes exposure to potential bad actors. RESULTS: Results show a significant proportion of respondents provided answers with a high degree of variability consistent with responses from bad actors. We also found that a wide-ranging selection of conditions in the survey screener is more consistent with choice patterns expected from bad actors looking to qualify for the study. The relationship between the number of incorrect answers to comprehension questions and problematic choice patterns peaked around 5 out of 10 questions. CONCLUSIONS: Our results highlight the need for a robust discussion around the appropriate way to handle bad actors in online preference surveys. While exclusion of survey respondents must be avoided under most circumstances, the impact of “bots” on preference estimates can be significant.
format Online
Article
Text
id pubmed-10553355
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-105533552023-10-06 Did a bot eat your homework? An assessment of the potential impact of bad actors in online administration of preference surveys Gonzalez, Juan Marcos Grover, Kiran Leblanc, Thomas W. Reeve, Bryce B. PLoS One Research Article BACKGROUND: Online administration of surveys has a number of advantages but can also lead to increased exposure to bad actors (human and non-human bots) who can try to influence the study results or to benefit financially from the survey. We analyze data collected through an online discrete-choice experiment (DCE) survey to evaluate the likelihood that bad actors can affect the quality of the data collected. METHODS: We developed and fielded a survey instrument that included two sets of DCE questions asking respondents to select their preferred treatments for multiple myeloma therapies. The survey also included questions to assess respondents’ attention while completing the survey and their understanding of the DCE questions. We used a latent-class model to identify a class associated with perverse preferences or high model variance, and the degree to which the quality checks included in the survey were correlated with class membership. Class-membership probabilities for the problematic class were used as weights in a random-parameters logit to recover population-level estimates that minimizes exposure to potential bad actors. RESULTS: Results show a significant proportion of respondents provided answers with a high degree of variability consistent with responses from bad actors. We also found that a wide-ranging selection of conditions in the survey screener is more consistent with choice patterns expected from bad actors looking to qualify for the study. The relationship between the number of incorrect answers to comprehension questions and problematic choice patterns peaked around 5 out of 10 questions. CONCLUSIONS: Our results highlight the need for a robust discussion around the appropriate way to handle bad actors in online preference surveys. While exclusion of survey respondents must be avoided under most circumstances, the impact of “bots” on preference estimates can be significant. Public Library of Science 2023-10-05 /pmc/articles/PMC10553355/ /pubmed/37796861 http://dx.doi.org/10.1371/journal.pone.0287766 Text en © 2023 Gonzalez et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Gonzalez, Juan Marcos
Grover, Kiran
Leblanc, Thomas W.
Reeve, Bryce B.
Did a bot eat your homework? An assessment of the potential impact of bad actors in online administration of preference surveys
title Did a bot eat your homework? An assessment of the potential impact of bad actors in online administration of preference surveys
title_full Did a bot eat your homework? An assessment of the potential impact of bad actors in online administration of preference surveys
title_fullStr Did a bot eat your homework? An assessment of the potential impact of bad actors in online administration of preference surveys
title_full_unstemmed Did a bot eat your homework? An assessment of the potential impact of bad actors in online administration of preference surveys
title_short Did a bot eat your homework? An assessment of the potential impact of bad actors in online administration of preference surveys
title_sort did a bot eat your homework? an assessment of the potential impact of bad actors in online administration of preference surveys
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10553355/
https://www.ncbi.nlm.nih.gov/pubmed/37796861
http://dx.doi.org/10.1371/journal.pone.0287766
work_keys_str_mv AT gonzalezjuanmarcos didaboteatyourhomeworkanassessmentofthepotentialimpactofbadactorsinonlineadministrationofpreferencesurveys
AT groverkiran didaboteatyourhomeworkanassessmentofthepotentialimpactofbadactorsinonlineadministrationofpreferencesurveys
AT leblancthomasw didaboteatyourhomeworkanassessmentofthepotentialimpactofbadactorsinonlineadministrationofpreferencesurveys
AT reevebryceb didaboteatyourhomeworkanassessmentofthepotentialimpactofbadactorsinonlineadministrationofpreferencesurveys