Cargando…
Generating MCMC proposals by randomly rotating the regular simplex
We present the simplicial sampler, a class of parallel MCMC methods that generate and choose from multiple proposals at each iteration. The algorithm’s multiproposal randomly rotates a simplex connected to the current Markov chain state in a way that inherently preserves symmetry between proposals....
Autor principal: | Holbrook, Andrew J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10553364/ https://www.ncbi.nlm.nih.gov/pubmed/37799825 http://dx.doi.org/10.1016/j.jmva.2022.105106 |
Ejemplares similares
-
A Neural Network MCMC Sampler That Maximizes Proposal Entropy
por: Li, Zengyi, et al.
Publicado: (2021) -
The Barker proposal: Combining robustness and efficiency in gradient‐based MCMC
por: Livingstone, Samuel, et al.
Publicado: (2022) -
Efficient parameter generation for constrained models using MCMC
por: Kravtsova, Natalia, et al.
Publicado: (2023) -
Accelerating MCMC algorithms
por: Robert, Christian P., et al.
Publicado: (2018) -
Fast Compression of MCMC Output
por: Chopin, Nicolas, et al.
Publicado: (2021)