Cargando…
OR20-01 Machine Learning-based Steroid Metabolome Analysis In Women With Polycystic Ovary Syndrome Reveals Three Distinct Androgen Excess Subtypes With Different Metabolic Risk Profiles.
Disclosure: T.P. Rocha: None. E. Melson: None. R.J. Veen: None. L. Abdi: None. T. McDonnell: None. V. Tandl: None. J. Hawley: None. L. Wittemans: None. A. Anthony: None. L. Gilligan: None. F. Shaheen: None. P. Kempegowda: None. C.D. Gillett: None. L. Cussen: None. C. Missbrenner: None. F. Lajeunesse...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10554504/ http://dx.doi.org/10.1210/jendso/bvad114.1653 |
_version_ | 1785116428809011200 |
---|---|
author | Rocha, Thaís P Melson, Eka Veen, Roland J Abdi, Lida McDonnell, Tara Tandl, Veronika Hawley, James Wittemans, Laura Anthony, Amarah Gilligan, Lorna Shaheen, Fozia Kempegowda, Punith Gillett, Caroline D T Cussen, Leanne Missbrenner, Cornelia Lajeunesse-Trempe, Fannie Gleeson, Helena Rees, Aled Robinson, Lynne Jayasenna, Channa Randeva, Harpal S Randeva, Harpal Singh Dimitriadis, Georgios K Gomes, Larissa G Sitch, Alice Vradi, Eleni Taylor, Angela E O'Reilly, Michael W Obermayer-Pietsch, Barbara Maria Biehl, Michael Arlt, Wiebke |
author_facet | Rocha, Thaís P Melson, Eka Veen, Roland J Abdi, Lida McDonnell, Tara Tandl, Veronika Hawley, James Wittemans, Laura Anthony, Amarah Gilligan, Lorna Shaheen, Fozia Kempegowda, Punith Gillett, Caroline D T Cussen, Leanne Missbrenner, Cornelia Lajeunesse-Trempe, Fannie Gleeson, Helena Rees, Aled Robinson, Lynne Jayasenna, Channa Randeva, Harpal S Randeva, Harpal Singh Dimitriadis, Georgios K Gomes, Larissa G Sitch, Alice Vradi, Eleni Taylor, Angela E O'Reilly, Michael W Obermayer-Pietsch, Barbara Maria Biehl, Michael Arlt, Wiebke |
author_sort | Rocha, Thaís P |
collection | PubMed |
description | Disclosure: T.P. Rocha: None. E. Melson: None. R.J. Veen: None. L. Abdi: None. T. McDonnell: None. V. Tandl: None. J. Hawley: None. L. Wittemans: None. A. Anthony: None. L. Gilligan: None. F. Shaheen: None. P. Kempegowda: None. C.D. Gillett: None. L. Cussen: None. C. Missbrenner: None. F. Lajeunesse-Trempe: None. H. Gleeson: None. A. Rees: None. L. Robinson: None. C. Jayasenna: None. H.S. Randeva: None. H.S. Randeva: None. G.K. Dimitriadis: None. L.G. Gomes: None. A. Sitch: None. E. Vradi: Employee; Self; Bayer Schering Pharma. A.E. Taylor: None. M.W. O'Reilly: None. B.M. Obermayer-Pietsch: None. M. Biehl: None. W. Arlt: None. Introduction: Polycystic ovary syndrome affects 10% of women and is associated with an increased risk of type 2 diabetes, hypertension, and fatty liver disease. Androgen excess, a defining feature of PCOS, has been implicated as a driver of metabolic risk. Adrenal-derived 11-oxygenated androgens are a component of PCOS-related androgen excess and are preferentially activated in adipose tissue. Here, we aimed to identify PCOS sub-types with distinct steroid metabolomes and compare their cardiometabolic risk parameters. Methods: We prospectively recruited 488 treatment-naïve women with PCOS fulfilling diagnostic Rotterdam criteria [median age 28 (IQR 24-32) years; BMI 27.5 (22.4-34.6) kg/m(2)] at eight centres in the UK & Ireland (n=208), Austria (n=242), and Brazil (n=38). Participants underwent a standardised assessment, including insulin sensitivity at baseline (HOMA-IR) and across a 2-h oGTT (Matsuda ISI). We used tandem mass spectrometry to measure 11 androgenic serum steroids, including classic and 11-oxygenated androgens. Results were analysed by unsupervised k-means clustering, followed by a comparison of clinical and metabolic phenotype parameters. Results: Machine learning analysis identified three distinct androgen metabolomes: a cluster with mainly gonadal-derived androgen excess (GAE; testosterone, dihydrotestosterone; 21.5% of women), a cluster with mainly adrenal-derived androgen excess (AAE; 11-oxygenated androgens; 21.7%), and a cluster with comparably mild androgen excess (MAE; 56.8%). Age and BMI were similar between groups. Compared to GAE and MAE, the AAE cluster had the highest rates of hirsutism (76.4% vs 67.6% vs 59.9%) and female pattern hair loss (32.1% vs 14.3% vs 21.7%). The AAE cluster had significantly increased insulin resistance as indicated by higher fasting insulin,120min insulin and HOMA-IR, and lower ISI than GAE and MAE clusters (all p<0.01). The AAE cluster had a 2-3fold higher prevalence of impaired glucose tolerance and newly diagnosed type 2 diabetes. Conclusion: Unsupervised cluster analysis revealed three distinct androgen excess subtypes in PCOS. Women within the adrenal androgen excess cluster had a significantly higher prevalence of insulin resistance, impaired glucose tolerance and type 2 diabetes. These results implicate 11-oxygenated androgens as drivers of metabolic risk in PCOS and provide proof-of-principle for an androgen-based stratification tool to guide preventative and therapeutic strategies in PCOS. Presentation Date: Saturday, June 17, 2023 |
format | Online Article Text |
id | pubmed-10554504 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-105545042023-10-06 OR20-01 Machine Learning-based Steroid Metabolome Analysis In Women With Polycystic Ovary Syndrome Reveals Three Distinct Androgen Excess Subtypes With Different Metabolic Risk Profiles. Rocha, Thaís P Melson, Eka Veen, Roland J Abdi, Lida McDonnell, Tara Tandl, Veronika Hawley, James Wittemans, Laura Anthony, Amarah Gilligan, Lorna Shaheen, Fozia Kempegowda, Punith Gillett, Caroline D T Cussen, Leanne Missbrenner, Cornelia Lajeunesse-Trempe, Fannie Gleeson, Helena Rees, Aled Robinson, Lynne Jayasenna, Channa Randeva, Harpal S Randeva, Harpal Singh Dimitriadis, Georgios K Gomes, Larissa G Sitch, Alice Vradi, Eleni Taylor, Angela E O'Reilly, Michael W Obermayer-Pietsch, Barbara Maria Biehl, Michael Arlt, Wiebke J Endocr Soc Reproductive Endocrinology Disclosure: T.P. Rocha: None. E. Melson: None. R.J. Veen: None. L. Abdi: None. T. McDonnell: None. V. Tandl: None. J. Hawley: None. L. Wittemans: None. A. Anthony: None. L. Gilligan: None. F. Shaheen: None. P. Kempegowda: None. C.D. Gillett: None. L. Cussen: None. C. Missbrenner: None. F. Lajeunesse-Trempe: None. H. Gleeson: None. A. Rees: None. L. Robinson: None. C. Jayasenna: None. H.S. Randeva: None. H.S. Randeva: None. G.K. Dimitriadis: None. L.G. Gomes: None. A. Sitch: None. E. Vradi: Employee; Self; Bayer Schering Pharma. A.E. Taylor: None. M.W. O'Reilly: None. B.M. Obermayer-Pietsch: None. M. Biehl: None. W. Arlt: None. Introduction: Polycystic ovary syndrome affects 10% of women and is associated with an increased risk of type 2 diabetes, hypertension, and fatty liver disease. Androgen excess, a defining feature of PCOS, has been implicated as a driver of metabolic risk. Adrenal-derived 11-oxygenated androgens are a component of PCOS-related androgen excess and are preferentially activated in adipose tissue. Here, we aimed to identify PCOS sub-types with distinct steroid metabolomes and compare their cardiometabolic risk parameters. Methods: We prospectively recruited 488 treatment-naïve women with PCOS fulfilling diagnostic Rotterdam criteria [median age 28 (IQR 24-32) years; BMI 27.5 (22.4-34.6) kg/m(2)] at eight centres in the UK & Ireland (n=208), Austria (n=242), and Brazil (n=38). Participants underwent a standardised assessment, including insulin sensitivity at baseline (HOMA-IR) and across a 2-h oGTT (Matsuda ISI). We used tandem mass spectrometry to measure 11 androgenic serum steroids, including classic and 11-oxygenated androgens. Results were analysed by unsupervised k-means clustering, followed by a comparison of clinical and metabolic phenotype parameters. Results: Machine learning analysis identified three distinct androgen metabolomes: a cluster with mainly gonadal-derived androgen excess (GAE; testosterone, dihydrotestosterone; 21.5% of women), a cluster with mainly adrenal-derived androgen excess (AAE; 11-oxygenated androgens; 21.7%), and a cluster with comparably mild androgen excess (MAE; 56.8%). Age and BMI were similar between groups. Compared to GAE and MAE, the AAE cluster had the highest rates of hirsutism (76.4% vs 67.6% vs 59.9%) and female pattern hair loss (32.1% vs 14.3% vs 21.7%). The AAE cluster had significantly increased insulin resistance as indicated by higher fasting insulin,120min insulin and HOMA-IR, and lower ISI than GAE and MAE clusters (all p<0.01). The AAE cluster had a 2-3fold higher prevalence of impaired glucose tolerance and newly diagnosed type 2 diabetes. Conclusion: Unsupervised cluster analysis revealed three distinct androgen excess subtypes in PCOS. Women within the adrenal androgen excess cluster had a significantly higher prevalence of insulin resistance, impaired glucose tolerance and type 2 diabetes. These results implicate 11-oxygenated androgens as drivers of metabolic risk in PCOS and provide proof-of-principle for an androgen-based stratification tool to guide preventative and therapeutic strategies in PCOS. Presentation Date: Saturday, June 17, 2023 Oxford University Press 2023-10-05 /pmc/articles/PMC10554504/ http://dx.doi.org/10.1210/jendso/bvad114.1653 Text en © The Author(s) 2023. Published by Oxford University Press on behalf of the Endocrine Society. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Reproductive Endocrinology Rocha, Thaís P Melson, Eka Veen, Roland J Abdi, Lida McDonnell, Tara Tandl, Veronika Hawley, James Wittemans, Laura Anthony, Amarah Gilligan, Lorna Shaheen, Fozia Kempegowda, Punith Gillett, Caroline D T Cussen, Leanne Missbrenner, Cornelia Lajeunesse-Trempe, Fannie Gleeson, Helena Rees, Aled Robinson, Lynne Jayasenna, Channa Randeva, Harpal S Randeva, Harpal Singh Dimitriadis, Georgios K Gomes, Larissa G Sitch, Alice Vradi, Eleni Taylor, Angela E O'Reilly, Michael W Obermayer-Pietsch, Barbara Maria Biehl, Michael Arlt, Wiebke OR20-01 Machine Learning-based Steroid Metabolome Analysis In Women With Polycystic Ovary Syndrome Reveals Three Distinct Androgen Excess Subtypes With Different Metabolic Risk Profiles. |
title | OR20-01 Machine Learning-based Steroid Metabolome Analysis In Women With Polycystic Ovary Syndrome Reveals Three Distinct Androgen Excess Subtypes With Different Metabolic Risk Profiles. |
title_full | OR20-01 Machine Learning-based Steroid Metabolome Analysis In Women With Polycystic Ovary Syndrome Reveals Three Distinct Androgen Excess Subtypes With Different Metabolic Risk Profiles. |
title_fullStr | OR20-01 Machine Learning-based Steroid Metabolome Analysis In Women With Polycystic Ovary Syndrome Reveals Three Distinct Androgen Excess Subtypes With Different Metabolic Risk Profiles. |
title_full_unstemmed | OR20-01 Machine Learning-based Steroid Metabolome Analysis In Women With Polycystic Ovary Syndrome Reveals Three Distinct Androgen Excess Subtypes With Different Metabolic Risk Profiles. |
title_short | OR20-01 Machine Learning-based Steroid Metabolome Analysis In Women With Polycystic Ovary Syndrome Reveals Three Distinct Androgen Excess Subtypes With Different Metabolic Risk Profiles. |
title_sort | or20-01 machine learning-based steroid metabolome analysis in women with polycystic ovary syndrome reveals three distinct androgen excess subtypes with different metabolic risk profiles. |
topic | Reproductive Endocrinology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10554504/ http://dx.doi.org/10.1210/jendso/bvad114.1653 |
work_keys_str_mv | AT rochathaisp or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles AT melsoneka or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles AT veenrolandj or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles AT abdilida or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles AT mcdonnelltara or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles AT tandlveronika or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles AT hawleyjames or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles AT wittemanslaura or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles AT anthonyamarah or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles AT gilliganlorna or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles AT shaheenfozia or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles AT kempegowdapunith or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles AT gillettcarolinedt or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles AT cussenleanne or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles AT missbrennercornelia or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles AT lajeunessetrempefannie or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles AT gleesonhelena or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles AT reesaled or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles AT robinsonlynne or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles AT jayasennachanna or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles AT randevaharpals or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles AT randevaharpalsingh or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles AT dimitriadisgeorgiosk or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles AT gomeslarissag or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles AT sitchalice or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles AT vradieleni or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles AT taylorangelae or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles AT oreillymichaelw or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles AT obermayerpietschbarbaramaria or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles AT biehlmichael or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles AT arltwiebke or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles |