Cargando…

OR20-01 Machine Learning-based Steroid Metabolome Analysis In Women With Polycystic Ovary Syndrome Reveals Three Distinct Androgen Excess Subtypes With Different Metabolic Risk Profiles.

Disclosure: T.P. Rocha: None. E. Melson: None. R.J. Veen: None. L. Abdi: None. T. McDonnell: None. V. Tandl: None. J. Hawley: None. L. Wittemans: None. A. Anthony: None. L. Gilligan: None. F. Shaheen: None. P. Kempegowda: None. C.D. Gillett: None. L. Cussen: None. C. Missbrenner: None. F. Lajeunesse...

Descripción completa

Detalles Bibliográficos
Autores principales: Rocha, Thaís P, Melson, Eka, Veen, Roland J, Abdi, Lida, McDonnell, Tara, Tandl, Veronika, Hawley, James, Wittemans, Laura, Anthony, Amarah, Gilligan, Lorna, Shaheen, Fozia, Kempegowda, Punith, Gillett, Caroline D T, Cussen, Leanne, Missbrenner, Cornelia, Lajeunesse-Trempe, Fannie, Gleeson, Helena, Rees, Aled, Robinson, Lynne, Jayasenna, Channa, Randeva, Harpal S, Randeva, Harpal Singh, Dimitriadis, Georgios K, Gomes, Larissa G, Sitch, Alice, Vradi, Eleni, Taylor, Angela E, O'Reilly, Michael W, Obermayer-Pietsch, Barbara Maria, Biehl, Michael, Arlt, Wiebke
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10554504/
http://dx.doi.org/10.1210/jendso/bvad114.1653
_version_ 1785116428809011200
author Rocha, Thaís P
Melson, Eka
Veen, Roland J
Abdi, Lida
McDonnell, Tara
Tandl, Veronika
Hawley, James
Wittemans, Laura
Anthony, Amarah
Gilligan, Lorna
Shaheen, Fozia
Kempegowda, Punith
Gillett, Caroline D T
Cussen, Leanne
Missbrenner, Cornelia
Lajeunesse-Trempe, Fannie
Gleeson, Helena
Rees, Aled
Robinson, Lynne
Jayasenna, Channa
Randeva, Harpal S
Randeva, Harpal Singh
Dimitriadis, Georgios K
Gomes, Larissa G
Sitch, Alice
Vradi, Eleni
Taylor, Angela E
O'Reilly, Michael W
Obermayer-Pietsch, Barbara Maria
Biehl, Michael
Arlt, Wiebke
author_facet Rocha, Thaís P
Melson, Eka
Veen, Roland J
Abdi, Lida
McDonnell, Tara
Tandl, Veronika
Hawley, James
Wittemans, Laura
Anthony, Amarah
Gilligan, Lorna
Shaheen, Fozia
Kempegowda, Punith
Gillett, Caroline D T
Cussen, Leanne
Missbrenner, Cornelia
Lajeunesse-Trempe, Fannie
Gleeson, Helena
Rees, Aled
Robinson, Lynne
Jayasenna, Channa
Randeva, Harpal S
Randeva, Harpal Singh
Dimitriadis, Georgios K
Gomes, Larissa G
Sitch, Alice
Vradi, Eleni
Taylor, Angela E
O'Reilly, Michael W
Obermayer-Pietsch, Barbara Maria
Biehl, Michael
Arlt, Wiebke
author_sort Rocha, Thaís P
collection PubMed
description Disclosure: T.P. Rocha: None. E. Melson: None. R.J. Veen: None. L. Abdi: None. T. McDonnell: None. V. Tandl: None. J. Hawley: None. L. Wittemans: None. A. Anthony: None. L. Gilligan: None. F. Shaheen: None. P. Kempegowda: None. C.D. Gillett: None. L. Cussen: None. C. Missbrenner: None. F. Lajeunesse-Trempe: None. H. Gleeson: None. A. Rees: None. L. Robinson: None. C. Jayasenna: None. H.S. Randeva: None. H.S. Randeva: None. G.K. Dimitriadis: None. L.G. Gomes: None. A. Sitch: None. E. Vradi: Employee; Self; Bayer Schering Pharma. A.E. Taylor: None. M.W. O'Reilly: None. B.M. Obermayer-Pietsch: None. M. Biehl: None. W. Arlt: None. Introduction: Polycystic ovary syndrome affects 10% of women and is associated with an increased risk of type 2 diabetes, hypertension, and fatty liver disease. Androgen excess, a defining feature of PCOS, has been implicated as a driver of metabolic risk. Adrenal-derived 11-oxygenated androgens are a component of PCOS-related androgen excess and are preferentially activated in adipose tissue. Here, we aimed to identify PCOS sub-types with distinct steroid metabolomes and compare their cardiometabolic risk parameters. Methods: We prospectively recruited 488 treatment-naïve women with PCOS fulfilling diagnostic Rotterdam criteria [median age 28 (IQR 24-32) years; BMI 27.5 (22.4-34.6) kg/m(2)] at eight centres in the UK & Ireland (n=208), Austria (n=242), and Brazil (n=38). Participants underwent a standardised assessment, including insulin sensitivity at baseline (HOMA-IR) and across a 2-h oGTT (Matsuda ISI). We used tandem mass spectrometry to measure 11 androgenic serum steroids, including classic and 11-oxygenated androgens. Results were analysed by unsupervised k-means clustering, followed by a comparison of clinical and metabolic phenotype parameters. Results: Machine learning analysis identified three distinct androgen metabolomes: a cluster with mainly gonadal-derived androgen excess (GAE; testosterone, dihydrotestosterone; 21.5% of women), a cluster with mainly adrenal-derived androgen excess (AAE; 11-oxygenated androgens; 21.7%), and a cluster with comparably mild androgen excess (MAE; 56.8%). Age and BMI were similar between groups. Compared to GAE and MAE, the AAE cluster had the highest rates of hirsutism (76.4% vs 67.6% vs 59.9%) and female pattern hair loss (32.1% vs 14.3% vs 21.7%). The AAE cluster had significantly increased insulin resistance as indicated by higher fasting insulin,120min insulin and HOMA-IR, and lower ISI than GAE and MAE clusters (all p<0.01). The AAE cluster had a 2-3fold higher prevalence of impaired glucose tolerance and newly diagnosed type 2 diabetes. Conclusion: Unsupervised cluster analysis revealed three distinct androgen excess subtypes in PCOS. Women within the adrenal androgen excess cluster had a significantly higher prevalence of insulin resistance, impaired glucose tolerance and type 2 diabetes. These results implicate 11-oxygenated androgens as drivers of metabolic risk in PCOS and provide proof-of-principle for an androgen-based stratification tool to guide preventative and therapeutic strategies in PCOS. Presentation Date: Saturday, June 17, 2023
format Online
Article
Text
id pubmed-10554504
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-105545042023-10-06 OR20-01 Machine Learning-based Steroid Metabolome Analysis In Women With Polycystic Ovary Syndrome Reveals Three Distinct Androgen Excess Subtypes With Different Metabolic Risk Profiles. Rocha, Thaís P Melson, Eka Veen, Roland J Abdi, Lida McDonnell, Tara Tandl, Veronika Hawley, James Wittemans, Laura Anthony, Amarah Gilligan, Lorna Shaheen, Fozia Kempegowda, Punith Gillett, Caroline D T Cussen, Leanne Missbrenner, Cornelia Lajeunesse-Trempe, Fannie Gleeson, Helena Rees, Aled Robinson, Lynne Jayasenna, Channa Randeva, Harpal S Randeva, Harpal Singh Dimitriadis, Georgios K Gomes, Larissa G Sitch, Alice Vradi, Eleni Taylor, Angela E O'Reilly, Michael W Obermayer-Pietsch, Barbara Maria Biehl, Michael Arlt, Wiebke J Endocr Soc Reproductive Endocrinology Disclosure: T.P. Rocha: None. E. Melson: None. R.J. Veen: None. L. Abdi: None. T. McDonnell: None. V. Tandl: None. J. Hawley: None. L. Wittemans: None. A. Anthony: None. L. Gilligan: None. F. Shaheen: None. P. Kempegowda: None. C.D. Gillett: None. L. Cussen: None. C. Missbrenner: None. F. Lajeunesse-Trempe: None. H. Gleeson: None. A. Rees: None. L. Robinson: None. C. Jayasenna: None. H.S. Randeva: None. H.S. Randeva: None. G.K. Dimitriadis: None. L.G. Gomes: None. A. Sitch: None. E. Vradi: Employee; Self; Bayer Schering Pharma. A.E. Taylor: None. M.W. O'Reilly: None. B.M. Obermayer-Pietsch: None. M. Biehl: None. W. Arlt: None. Introduction: Polycystic ovary syndrome affects 10% of women and is associated with an increased risk of type 2 diabetes, hypertension, and fatty liver disease. Androgen excess, a defining feature of PCOS, has been implicated as a driver of metabolic risk. Adrenal-derived 11-oxygenated androgens are a component of PCOS-related androgen excess and are preferentially activated in adipose tissue. Here, we aimed to identify PCOS sub-types with distinct steroid metabolomes and compare their cardiometabolic risk parameters. Methods: We prospectively recruited 488 treatment-naïve women with PCOS fulfilling diagnostic Rotterdam criteria [median age 28 (IQR 24-32) years; BMI 27.5 (22.4-34.6) kg/m(2)] at eight centres in the UK & Ireland (n=208), Austria (n=242), and Brazil (n=38). Participants underwent a standardised assessment, including insulin sensitivity at baseline (HOMA-IR) and across a 2-h oGTT (Matsuda ISI). We used tandem mass spectrometry to measure 11 androgenic serum steroids, including classic and 11-oxygenated androgens. Results were analysed by unsupervised k-means clustering, followed by a comparison of clinical and metabolic phenotype parameters. Results: Machine learning analysis identified three distinct androgen metabolomes: a cluster with mainly gonadal-derived androgen excess (GAE; testosterone, dihydrotestosterone; 21.5% of women), a cluster with mainly adrenal-derived androgen excess (AAE; 11-oxygenated androgens; 21.7%), and a cluster with comparably mild androgen excess (MAE; 56.8%). Age and BMI were similar between groups. Compared to GAE and MAE, the AAE cluster had the highest rates of hirsutism (76.4% vs 67.6% vs 59.9%) and female pattern hair loss (32.1% vs 14.3% vs 21.7%). The AAE cluster had significantly increased insulin resistance as indicated by higher fasting insulin,120min insulin and HOMA-IR, and lower ISI than GAE and MAE clusters (all p<0.01). The AAE cluster had a 2-3fold higher prevalence of impaired glucose tolerance and newly diagnosed type 2 diabetes. Conclusion: Unsupervised cluster analysis revealed three distinct androgen excess subtypes in PCOS. Women within the adrenal androgen excess cluster had a significantly higher prevalence of insulin resistance, impaired glucose tolerance and type 2 diabetes. These results implicate 11-oxygenated androgens as drivers of metabolic risk in PCOS and provide proof-of-principle for an androgen-based stratification tool to guide preventative and therapeutic strategies in PCOS. Presentation Date: Saturday, June 17, 2023 Oxford University Press 2023-10-05 /pmc/articles/PMC10554504/ http://dx.doi.org/10.1210/jendso/bvad114.1653 Text en © The Author(s) 2023. Published by Oxford University Press on behalf of the Endocrine Society. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Reproductive Endocrinology
Rocha, Thaís P
Melson, Eka
Veen, Roland J
Abdi, Lida
McDonnell, Tara
Tandl, Veronika
Hawley, James
Wittemans, Laura
Anthony, Amarah
Gilligan, Lorna
Shaheen, Fozia
Kempegowda, Punith
Gillett, Caroline D T
Cussen, Leanne
Missbrenner, Cornelia
Lajeunesse-Trempe, Fannie
Gleeson, Helena
Rees, Aled
Robinson, Lynne
Jayasenna, Channa
Randeva, Harpal S
Randeva, Harpal Singh
Dimitriadis, Georgios K
Gomes, Larissa G
Sitch, Alice
Vradi, Eleni
Taylor, Angela E
O'Reilly, Michael W
Obermayer-Pietsch, Barbara Maria
Biehl, Michael
Arlt, Wiebke
OR20-01 Machine Learning-based Steroid Metabolome Analysis In Women With Polycystic Ovary Syndrome Reveals Three Distinct Androgen Excess Subtypes With Different Metabolic Risk Profiles.
title OR20-01 Machine Learning-based Steroid Metabolome Analysis In Women With Polycystic Ovary Syndrome Reveals Three Distinct Androgen Excess Subtypes With Different Metabolic Risk Profiles.
title_full OR20-01 Machine Learning-based Steroid Metabolome Analysis In Women With Polycystic Ovary Syndrome Reveals Three Distinct Androgen Excess Subtypes With Different Metabolic Risk Profiles.
title_fullStr OR20-01 Machine Learning-based Steroid Metabolome Analysis In Women With Polycystic Ovary Syndrome Reveals Three Distinct Androgen Excess Subtypes With Different Metabolic Risk Profiles.
title_full_unstemmed OR20-01 Machine Learning-based Steroid Metabolome Analysis In Women With Polycystic Ovary Syndrome Reveals Three Distinct Androgen Excess Subtypes With Different Metabolic Risk Profiles.
title_short OR20-01 Machine Learning-based Steroid Metabolome Analysis In Women With Polycystic Ovary Syndrome Reveals Three Distinct Androgen Excess Subtypes With Different Metabolic Risk Profiles.
title_sort or20-01 machine learning-based steroid metabolome analysis in women with polycystic ovary syndrome reveals three distinct androgen excess subtypes with different metabolic risk profiles.
topic Reproductive Endocrinology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10554504/
http://dx.doi.org/10.1210/jendso/bvad114.1653
work_keys_str_mv AT rochathaisp or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles
AT melsoneka or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles
AT veenrolandj or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles
AT abdilida or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles
AT mcdonnelltara or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles
AT tandlveronika or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles
AT hawleyjames or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles
AT wittemanslaura or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles
AT anthonyamarah or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles
AT gilliganlorna or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles
AT shaheenfozia or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles
AT kempegowdapunith or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles
AT gillettcarolinedt or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles
AT cussenleanne or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles
AT missbrennercornelia or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles
AT lajeunessetrempefannie or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles
AT gleesonhelena or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles
AT reesaled or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles
AT robinsonlynne or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles
AT jayasennachanna or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles
AT randevaharpals or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles
AT randevaharpalsingh or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles
AT dimitriadisgeorgiosk or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles
AT gomeslarissag or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles
AT sitchalice or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles
AT vradieleni or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles
AT taylorangelae or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles
AT oreillymichaelw or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles
AT obermayerpietschbarbaramaria or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles
AT biehlmichael or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles
AT arltwiebke or2001machinelearningbasedsteroidmetabolomeanalysisinwomenwithpolycysticovarysyndromerevealsthreedistinctandrogenexcesssubtypeswithdifferentmetabolicriskprofiles