Cargando…

Statistically unbiased prediction enables accurate denoising of voltage imaging data

Here we report SUPPORT (statistically unbiased prediction utilizing spatiotemporal information in imaging data), a self-supervised learning method for removing Poisson–Gaussian noise in voltage imaging data. SUPPORT is based on the insight that a pixel value in voltage imaging data is highly depende...

Descripción completa

Detalles Bibliográficos
Autores principales: Eom, Minho, Han, Seungjae, Park, Pojeong, Kim, Gyuri, Cho, Eun-Seo, Sim, Jueun, Lee, Kang-Han, Kim, Seonghoon, Tian, He, Böhm, Urs L., Lowet, Eric, Tseng, Hua-an, Choi, Jieun, Lucia, Stephani Edwina, Ryu, Seung Hyun, Rózsa, Márton, Chang, Sunghoe, Kim, Pilhan, Han, Xue, Piatkevich, Kiryl D., Choi, Myunghwan, Kim, Cheol-Hee, Cohen, Adam E., Chang, Jae-Byum, Yoon, Young-Gyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group US 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10555843/
https://www.ncbi.nlm.nih.gov/pubmed/37723246
http://dx.doi.org/10.1038/s41592-023-02005-8
_version_ 1785116747900125184
author Eom, Minho
Han, Seungjae
Park, Pojeong
Kim, Gyuri
Cho, Eun-Seo
Sim, Jueun
Lee, Kang-Han
Kim, Seonghoon
Tian, He
Böhm, Urs L.
Lowet, Eric
Tseng, Hua-an
Choi, Jieun
Lucia, Stephani Edwina
Ryu, Seung Hyun
Rózsa, Márton
Chang, Sunghoe
Kim, Pilhan
Han, Xue
Piatkevich, Kiryl D.
Choi, Myunghwan
Kim, Cheol-Hee
Cohen, Adam E.
Chang, Jae-Byum
Yoon, Young-Gyu
author_facet Eom, Minho
Han, Seungjae
Park, Pojeong
Kim, Gyuri
Cho, Eun-Seo
Sim, Jueun
Lee, Kang-Han
Kim, Seonghoon
Tian, He
Böhm, Urs L.
Lowet, Eric
Tseng, Hua-an
Choi, Jieun
Lucia, Stephani Edwina
Ryu, Seung Hyun
Rózsa, Márton
Chang, Sunghoe
Kim, Pilhan
Han, Xue
Piatkevich, Kiryl D.
Choi, Myunghwan
Kim, Cheol-Hee
Cohen, Adam E.
Chang, Jae-Byum
Yoon, Young-Gyu
author_sort Eom, Minho
collection PubMed
description Here we report SUPPORT (statistically unbiased prediction utilizing spatiotemporal information in imaging data), a self-supervised learning method for removing Poisson–Gaussian noise in voltage imaging data. SUPPORT is based on the insight that a pixel value in voltage imaging data is highly dependent on its spatiotemporal neighboring pixels, even when its temporally adjacent frames alone do not provide useful information for statistical prediction. Such dependency is captured and used by a convolutional neural network with a spatiotemporal blind spot to accurately denoise voltage imaging data in which the existence of the action potential in a time frame cannot be inferred by the information in other frames. Through simulations and experiments, we show that SUPPORT enables precise denoising of voltage imaging data and other types of microscopy image while preserving the underlying dynamics within the scene.
format Online
Article
Text
id pubmed-10555843
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group US
record_format MEDLINE/PubMed
spelling pubmed-105558432023-10-07 Statistically unbiased prediction enables accurate denoising of voltage imaging data Eom, Minho Han, Seungjae Park, Pojeong Kim, Gyuri Cho, Eun-Seo Sim, Jueun Lee, Kang-Han Kim, Seonghoon Tian, He Böhm, Urs L. Lowet, Eric Tseng, Hua-an Choi, Jieun Lucia, Stephani Edwina Ryu, Seung Hyun Rózsa, Márton Chang, Sunghoe Kim, Pilhan Han, Xue Piatkevich, Kiryl D. Choi, Myunghwan Kim, Cheol-Hee Cohen, Adam E. Chang, Jae-Byum Yoon, Young-Gyu Nat Methods Article Here we report SUPPORT (statistically unbiased prediction utilizing spatiotemporal information in imaging data), a self-supervised learning method for removing Poisson–Gaussian noise in voltage imaging data. SUPPORT is based on the insight that a pixel value in voltage imaging data is highly dependent on its spatiotemporal neighboring pixels, even when its temporally adjacent frames alone do not provide useful information for statistical prediction. Such dependency is captured and used by a convolutional neural network with a spatiotemporal blind spot to accurately denoise voltage imaging data in which the existence of the action potential in a time frame cannot be inferred by the information in other frames. Through simulations and experiments, we show that SUPPORT enables precise denoising of voltage imaging data and other types of microscopy image while preserving the underlying dynamics within the scene. Nature Publishing Group US 2023-09-18 2023 /pmc/articles/PMC10555843/ /pubmed/37723246 http://dx.doi.org/10.1038/s41592-023-02005-8 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Eom, Minho
Han, Seungjae
Park, Pojeong
Kim, Gyuri
Cho, Eun-Seo
Sim, Jueun
Lee, Kang-Han
Kim, Seonghoon
Tian, He
Böhm, Urs L.
Lowet, Eric
Tseng, Hua-an
Choi, Jieun
Lucia, Stephani Edwina
Ryu, Seung Hyun
Rózsa, Márton
Chang, Sunghoe
Kim, Pilhan
Han, Xue
Piatkevich, Kiryl D.
Choi, Myunghwan
Kim, Cheol-Hee
Cohen, Adam E.
Chang, Jae-Byum
Yoon, Young-Gyu
Statistically unbiased prediction enables accurate denoising of voltage imaging data
title Statistically unbiased prediction enables accurate denoising of voltage imaging data
title_full Statistically unbiased prediction enables accurate denoising of voltage imaging data
title_fullStr Statistically unbiased prediction enables accurate denoising of voltage imaging data
title_full_unstemmed Statistically unbiased prediction enables accurate denoising of voltage imaging data
title_short Statistically unbiased prediction enables accurate denoising of voltage imaging data
title_sort statistically unbiased prediction enables accurate denoising of voltage imaging data
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10555843/
https://www.ncbi.nlm.nih.gov/pubmed/37723246
http://dx.doi.org/10.1038/s41592-023-02005-8
work_keys_str_mv AT eomminho statisticallyunbiasedpredictionenablesaccuratedenoisingofvoltageimagingdata
AT hanseungjae statisticallyunbiasedpredictionenablesaccuratedenoisingofvoltageimagingdata
AT parkpojeong statisticallyunbiasedpredictionenablesaccuratedenoisingofvoltageimagingdata
AT kimgyuri statisticallyunbiasedpredictionenablesaccuratedenoisingofvoltageimagingdata
AT choeunseo statisticallyunbiasedpredictionenablesaccuratedenoisingofvoltageimagingdata
AT simjueun statisticallyunbiasedpredictionenablesaccuratedenoisingofvoltageimagingdata
AT leekanghan statisticallyunbiasedpredictionenablesaccuratedenoisingofvoltageimagingdata
AT kimseonghoon statisticallyunbiasedpredictionenablesaccuratedenoisingofvoltageimagingdata
AT tianhe statisticallyunbiasedpredictionenablesaccuratedenoisingofvoltageimagingdata
AT bohmursl statisticallyunbiasedpredictionenablesaccuratedenoisingofvoltageimagingdata
AT loweteric statisticallyunbiasedpredictionenablesaccuratedenoisingofvoltageimagingdata
AT tsenghuaan statisticallyunbiasedpredictionenablesaccuratedenoisingofvoltageimagingdata
AT choijieun statisticallyunbiasedpredictionenablesaccuratedenoisingofvoltageimagingdata
AT luciastephaniedwina statisticallyunbiasedpredictionenablesaccuratedenoisingofvoltageimagingdata
AT ryuseunghyun statisticallyunbiasedpredictionenablesaccuratedenoisingofvoltageimagingdata
AT rozsamarton statisticallyunbiasedpredictionenablesaccuratedenoisingofvoltageimagingdata
AT changsunghoe statisticallyunbiasedpredictionenablesaccuratedenoisingofvoltageimagingdata
AT kimpilhan statisticallyunbiasedpredictionenablesaccuratedenoisingofvoltageimagingdata
AT hanxue statisticallyunbiasedpredictionenablesaccuratedenoisingofvoltageimagingdata
AT piatkevichkiryld statisticallyunbiasedpredictionenablesaccuratedenoisingofvoltageimagingdata
AT choimyunghwan statisticallyunbiasedpredictionenablesaccuratedenoisingofvoltageimagingdata
AT kimcheolhee statisticallyunbiasedpredictionenablesaccuratedenoisingofvoltageimagingdata
AT cohenadame statisticallyunbiasedpredictionenablesaccuratedenoisingofvoltageimagingdata
AT changjaebyum statisticallyunbiasedpredictionenablesaccuratedenoisingofvoltageimagingdata
AT yoonyounggyu statisticallyunbiasedpredictionenablesaccuratedenoisingofvoltageimagingdata