Cargando…
Statistically unbiased prediction enables accurate denoising of voltage imaging data
Here we report SUPPORT (statistically unbiased prediction utilizing spatiotemporal information in imaging data), a self-supervised learning method for removing Poisson–Gaussian noise in voltage imaging data. SUPPORT is based on the insight that a pixel value in voltage imaging data is highly depende...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10555843/ https://www.ncbi.nlm.nih.gov/pubmed/37723246 http://dx.doi.org/10.1038/s41592-023-02005-8 |
_version_ | 1785116747900125184 |
---|---|
author | Eom, Minho Han, Seungjae Park, Pojeong Kim, Gyuri Cho, Eun-Seo Sim, Jueun Lee, Kang-Han Kim, Seonghoon Tian, He Böhm, Urs L. Lowet, Eric Tseng, Hua-an Choi, Jieun Lucia, Stephani Edwina Ryu, Seung Hyun Rózsa, Márton Chang, Sunghoe Kim, Pilhan Han, Xue Piatkevich, Kiryl D. Choi, Myunghwan Kim, Cheol-Hee Cohen, Adam E. Chang, Jae-Byum Yoon, Young-Gyu |
author_facet | Eom, Minho Han, Seungjae Park, Pojeong Kim, Gyuri Cho, Eun-Seo Sim, Jueun Lee, Kang-Han Kim, Seonghoon Tian, He Böhm, Urs L. Lowet, Eric Tseng, Hua-an Choi, Jieun Lucia, Stephani Edwina Ryu, Seung Hyun Rózsa, Márton Chang, Sunghoe Kim, Pilhan Han, Xue Piatkevich, Kiryl D. Choi, Myunghwan Kim, Cheol-Hee Cohen, Adam E. Chang, Jae-Byum Yoon, Young-Gyu |
author_sort | Eom, Minho |
collection | PubMed |
description | Here we report SUPPORT (statistically unbiased prediction utilizing spatiotemporal information in imaging data), a self-supervised learning method for removing Poisson–Gaussian noise in voltage imaging data. SUPPORT is based on the insight that a pixel value in voltage imaging data is highly dependent on its spatiotemporal neighboring pixels, even when its temporally adjacent frames alone do not provide useful information for statistical prediction. Such dependency is captured and used by a convolutional neural network with a spatiotemporal blind spot to accurately denoise voltage imaging data in which the existence of the action potential in a time frame cannot be inferred by the information in other frames. Through simulations and experiments, we show that SUPPORT enables precise denoising of voltage imaging data and other types of microscopy image while preserving the underlying dynamics within the scene. |
format | Online Article Text |
id | pubmed-10555843 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group US |
record_format | MEDLINE/PubMed |
spelling | pubmed-105558432023-10-07 Statistically unbiased prediction enables accurate denoising of voltage imaging data Eom, Minho Han, Seungjae Park, Pojeong Kim, Gyuri Cho, Eun-Seo Sim, Jueun Lee, Kang-Han Kim, Seonghoon Tian, He Böhm, Urs L. Lowet, Eric Tseng, Hua-an Choi, Jieun Lucia, Stephani Edwina Ryu, Seung Hyun Rózsa, Márton Chang, Sunghoe Kim, Pilhan Han, Xue Piatkevich, Kiryl D. Choi, Myunghwan Kim, Cheol-Hee Cohen, Adam E. Chang, Jae-Byum Yoon, Young-Gyu Nat Methods Article Here we report SUPPORT (statistically unbiased prediction utilizing spatiotemporal information in imaging data), a self-supervised learning method for removing Poisson–Gaussian noise in voltage imaging data. SUPPORT is based on the insight that a pixel value in voltage imaging data is highly dependent on its spatiotemporal neighboring pixels, even when its temporally adjacent frames alone do not provide useful information for statistical prediction. Such dependency is captured and used by a convolutional neural network with a spatiotemporal blind spot to accurately denoise voltage imaging data in which the existence of the action potential in a time frame cannot be inferred by the information in other frames. Through simulations and experiments, we show that SUPPORT enables precise denoising of voltage imaging data and other types of microscopy image while preserving the underlying dynamics within the scene. Nature Publishing Group US 2023-09-18 2023 /pmc/articles/PMC10555843/ /pubmed/37723246 http://dx.doi.org/10.1038/s41592-023-02005-8 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Eom, Minho Han, Seungjae Park, Pojeong Kim, Gyuri Cho, Eun-Seo Sim, Jueun Lee, Kang-Han Kim, Seonghoon Tian, He Böhm, Urs L. Lowet, Eric Tseng, Hua-an Choi, Jieun Lucia, Stephani Edwina Ryu, Seung Hyun Rózsa, Márton Chang, Sunghoe Kim, Pilhan Han, Xue Piatkevich, Kiryl D. Choi, Myunghwan Kim, Cheol-Hee Cohen, Adam E. Chang, Jae-Byum Yoon, Young-Gyu Statistically unbiased prediction enables accurate denoising of voltage imaging data |
title | Statistically unbiased prediction enables accurate denoising of voltage imaging data |
title_full | Statistically unbiased prediction enables accurate denoising of voltage imaging data |
title_fullStr | Statistically unbiased prediction enables accurate denoising of voltage imaging data |
title_full_unstemmed | Statistically unbiased prediction enables accurate denoising of voltage imaging data |
title_short | Statistically unbiased prediction enables accurate denoising of voltage imaging data |
title_sort | statistically unbiased prediction enables accurate denoising of voltage imaging data |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10555843/ https://www.ncbi.nlm.nih.gov/pubmed/37723246 http://dx.doi.org/10.1038/s41592-023-02005-8 |
work_keys_str_mv | AT eomminho statisticallyunbiasedpredictionenablesaccuratedenoisingofvoltageimagingdata AT hanseungjae statisticallyunbiasedpredictionenablesaccuratedenoisingofvoltageimagingdata AT parkpojeong statisticallyunbiasedpredictionenablesaccuratedenoisingofvoltageimagingdata AT kimgyuri statisticallyunbiasedpredictionenablesaccuratedenoisingofvoltageimagingdata AT choeunseo statisticallyunbiasedpredictionenablesaccuratedenoisingofvoltageimagingdata AT simjueun statisticallyunbiasedpredictionenablesaccuratedenoisingofvoltageimagingdata AT leekanghan statisticallyunbiasedpredictionenablesaccuratedenoisingofvoltageimagingdata AT kimseonghoon statisticallyunbiasedpredictionenablesaccuratedenoisingofvoltageimagingdata AT tianhe statisticallyunbiasedpredictionenablesaccuratedenoisingofvoltageimagingdata AT bohmursl statisticallyunbiasedpredictionenablesaccuratedenoisingofvoltageimagingdata AT loweteric statisticallyunbiasedpredictionenablesaccuratedenoisingofvoltageimagingdata AT tsenghuaan statisticallyunbiasedpredictionenablesaccuratedenoisingofvoltageimagingdata AT choijieun statisticallyunbiasedpredictionenablesaccuratedenoisingofvoltageimagingdata AT luciastephaniedwina statisticallyunbiasedpredictionenablesaccuratedenoisingofvoltageimagingdata AT ryuseunghyun statisticallyunbiasedpredictionenablesaccuratedenoisingofvoltageimagingdata AT rozsamarton statisticallyunbiasedpredictionenablesaccuratedenoisingofvoltageimagingdata AT changsunghoe statisticallyunbiasedpredictionenablesaccuratedenoisingofvoltageimagingdata AT kimpilhan statisticallyunbiasedpredictionenablesaccuratedenoisingofvoltageimagingdata AT hanxue statisticallyunbiasedpredictionenablesaccuratedenoisingofvoltageimagingdata AT piatkevichkiryld statisticallyunbiasedpredictionenablesaccuratedenoisingofvoltageimagingdata AT choimyunghwan statisticallyunbiasedpredictionenablesaccuratedenoisingofvoltageimagingdata AT kimcheolhee statisticallyunbiasedpredictionenablesaccuratedenoisingofvoltageimagingdata AT cohenadame statisticallyunbiasedpredictionenablesaccuratedenoisingofvoltageimagingdata AT changjaebyum statisticallyunbiasedpredictionenablesaccuratedenoisingofvoltageimagingdata AT yoonyounggyu statisticallyunbiasedpredictionenablesaccuratedenoisingofvoltageimagingdata |