Cargando…

Drawing a materials map with an autoencoder for lithium ionic conductors

Efforts to optimize known materials and enhance their performance are ongoing, driven by the advancements resulting from the discovery of novel functional materials. Traditionally, the search for and optimization of functional materials has relied on the experience and intuition of specialized resea...

Descripción completa

Detalles Bibliográficos
Autores principales: Yamaguchi, Yudai, Atsumi, Taruto, Kanamori, Kenta, Tanibata, Naoto, Takeda, Hayami, Nakayama, Masanobu, Karasuyama, Masayuki, Takeuchi, Ichiro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10556005/
https://www.ncbi.nlm.nih.gov/pubmed/37798325
http://dx.doi.org/10.1038/s41598-023-43921-1
Descripción
Sumario:Efforts to optimize known materials and enhance their performance are ongoing, driven by the advancements resulting from the discovery of novel functional materials. Traditionally, the search for and optimization of functional materials has relied on the experience and intuition of specialized researchers. However, materials informatics (MI), which integrates materials data and machine learning, has frequently been used to realize systematic and efficient materials exploration without depending on manual tasks. Nonetheless, the discovery of new materials using MI remains challenging. In this study, we propose a method for the discovery of materials outside the scope of existing databases by combining MI with the experience and intuition of researchers. Specifically, we designed a two-dimensional map that plots known materials data based on their composition and structure, facilitating researchers’ intuitive search for new materials. The materials map was implemented using an autoencoder-based neural network. We focused on the conductivity of 708 lithium oxide materials and considered the correlation with migration energy (ME), an index of lithium-ion conductivity. The distribution of existing data reflected in the materials map can contribute to the development of new lithium-ion conductive materials by enhancing the experience and intuition of material researchers.