Cargando…
Drawing a materials map with an autoencoder for lithium ionic conductors
Efforts to optimize known materials and enhance their performance are ongoing, driven by the advancements resulting from the discovery of novel functional materials. Traditionally, the search for and optimization of functional materials has relied on the experience and intuition of specialized resea...
Autores principales: | Yamaguchi, Yudai, Atsumi, Taruto, Kanamori, Kenta, Tanibata, Naoto, Takeda, Hayami, Nakayama, Masanobu, Karasuyama, Masayuki, Takeuchi, Ichiro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10556005/ https://www.ncbi.nlm.nih.gov/pubmed/37798325 http://dx.doi.org/10.1038/s41598-023-43921-1 |
Ejemplares similares
-
Bayesian optimisation with transfer learning for NASICON-type solid electrolytes for all-solid-state Li-metal batteries
por: Fukuda, Hiroko, et al.
Publicado: (2022) -
Novel Mg-ion conductive oxide of μ-cordierite Mg(0.6)Al(1.2)Si(1.8)O(6)
por: Takeda, Hayami, et al.
Publicado: (2020) -
Bayesian-Driven First-Principles Calculations for Accelerating Exploration of Fast Ion Conductors for Rechargeable Battery Application
por: Jalem, Randy, et al.
Publicado: (2018) -
First-Principles Density Functional Theory Calculations
for Formic Acid Adsorption onto Hydro-Garnet Compounds
por: Nakayama, Masanobu, et al.
Publicado: (2020) -
Computational studies on defect chemistry and Li-ion conductivity of spinel-type LiAl(5)O(8) as coating material for Li-metal electrode
por: Miyakawa, Shuntaro, et al.
Publicado: (2022)