Cargando…

Quantification of expected information gain in visual acuity and contrast sensitivity tests

We make use of expected information gain to quantify the amount of knowledge obtained from measurements in a population. In the first application, we compared the expected information gain in the Snellen, ETDRS, and qVA visual acuity (VA) tests, as well as in the Pelli–Robson, CSV-1000, and qCSF con...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Zhong-Lin, Zhao, Yukai, Lesmes, Luis Andres, Dorr, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10556053/
https://www.ncbi.nlm.nih.gov/pubmed/37798305
http://dx.doi.org/10.1038/s41598-023-43913-1
Descripción
Sumario:We make use of expected information gain to quantify the amount of knowledge obtained from measurements in a population. In the first application, we compared the expected information gain in the Snellen, ETDRS, and qVA visual acuity (VA) tests, as well as in the Pelli–Robson, CSV-1000, and qCSF contrast sensitivity (CS) tests. For the VA tests, ETDRS generated more expected information gain than Snellen. Additionally, the qVA test with 15 rows (or 45 optotypes) generated more expected information gain than ETDRS, whether scored with VA threshold alone or with both VA threshold and VA range. Regarding the CS tests, CSV-1000 generated more expected information gain than Pelli–Robson, and the qCSF test with 25 trials generated more expected information gain than CSV-1000, whether scored with AULCSF or with CSF at six spatial frequencies. The active learning-based qVA and qCSF tests have the potential to generate more expected information gain than traditional paper chart tests. Although we have specifically applied it to compare VA and CS tests, expected information gain is a general concept that can be used to compare measurements in any domain.