Cargando…

Aquafeed fermentation improves dietary nutritional quality and benefits feeding behavior, meat flavor, and intestinal microbiota of Chinese mitten crab (Eriocheir sinensis)

Normally, proper fermentation can be an efficient and widely used method to improve feed quality in animal rearing; however, the studies on crustaceans, especially Eriocheir sinensis, remain limited. This study aimed to investigate whether feed fermentation could meliorate dietary nutritional value...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Weibo, Jia, Xiaoyan, Xie, Ningjun, Wen, Chuang, Ma, Shuo, Jiang, Guangzhen, Li, Xiangfei, Chi, Cheng, Zhang, Dingdong, Liu, Wenbin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: KeAi Publishing 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10556058/
https://www.ncbi.nlm.nih.gov/pubmed/37808949
http://dx.doi.org/10.1016/j.aninu.2023.04.002
Descripción
Sumario:Normally, proper fermentation can be an efficient and widely used method to improve feed quality in animal rearing; however, the studies on crustaceans, especially Eriocheir sinensis, remain limited. This study aimed to investigate whether feed fermentation could meliorate dietary nutritional value and benefit E. sinensis rearing. First, non-fermented feed (NFD) and fermented feed (FD) were produced and assessed, respectively. Then, the “Y” maze feed choice behavior test (180 times; 30 times, 6 rounds) was conducted to assess the attractiveness of these 2 feeds for crabs. Finally, a total of 80 crabs (44.10 ± 0.80 g) were randomly assigned into 2 groups with 4 replicates, and fed the experimental diets for 8 weeks to evaluate the effects of each feed on growth, antioxidant capacity, meat flavor, and intestinal microbiota. In this study, FD showed higher levels of crude protein (P < 0.01), soluble protein (P < 0.01), amino acids (P < 0.05), lactic acid (P < 0.001), and lower levels of crude fiber (P < 0.05) and antinutritional factors (agglutinin, trypsin inhibitor, glycinin, and β-conglycinin) (P < 0.001) than NFD. Additionally, FD was more attractive to crabs than NFD (P < 0.01) and it stimulated the appetite of crabs more than NFD (P < 0.05). The growth performance, feed efficiency, and digestive enzyme activity of FD-fed crabs were significantly higher than those of NFD-fed crabs (P < 0.05). The electronic sensory measurements and free amino acid profiles revealed that the FD diet had positive impacts on the meat flavor of crabs, particularly in “sweet” and “umami” tastes. Moreover, the antioxidant capacity of FD-fed crabs was significantly higher than that of NFD-fed crabs (P < 0.05). Fermented feed also affected the diversity and composition of intestinal microflora. The functional prediction of microbial communities showed that crabs fed FD had a better microecological environment in the intestine. In conclusion, the fermentation of aquafeed could be an effective approach to enhance feed quality and therefore benefit E. sinensis rearing.