Cargando…
Re-evaluation of publicly available gene-expression databases using machine-learning yields a maximum prognostic power in breast cancer
Gene expression signatures refer to patterns of gene activities and are used to classify different types of cancer, determine prognosis, and guide treatment decisions. Advancements in high-throughput technology and machine learning have led to improvements to predict a patient’s prognosis for differ...
Autores principales: | Tschodu, Dimitrij, Lippoldt, Jürgen, Gottheil, Pablo, Wegscheider, Anne-Sophie, Käs, Josef A., Niendorf, Axel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10556090/ https://www.ncbi.nlm.nih.gov/pubmed/37798300 http://dx.doi.org/10.1038/s41598-023-41090-9 |
Ejemplares similares
-
Comparative analysis of molecular signatures reveals a hybrid approach in breast cancer: Combining the Nottingham Prognostic Index with gene expressions into a hybrid signature
por: Tschodu, Dimitrij, et al.
Publicado: (2022) -
The Mechanical Fingerprint of Circulating Tumor Cells (CTCs) in Breast Cancer Patients
por: Nel, Ivonne, et al.
Publicado: (2021) -
The CLIC re power source not yet available
por: Braun, HH, et al.
Publicado: (1998) -
Altona Prognostic Index: A New Prognostic Index for ER-Positive and Her2-Negative Breast Cancer of No Special Type
por: Wegscheider, Anne-Sophie, et al.
Publicado: (2021) -
Design of systems and circuits for maximum reliability or maximum production yield /
por: Becker, Peter W.
Publicado: (1977)