Cargando…

Modulation-doping a correlated electron insulator

Correlated electron materials (CEMs) host a rich variety of condensed matter phases. Vanadium dioxide (VO(2)) is a prototypical CEM with a temperature-dependent metal-to-insulator (MIT) transition with a concomitant crystal symmetry change. External control of MIT in VO(2)—especially without inducin...

Descripción completa

Detalles Bibliográficos
Autores principales: Mondal, Debasish, Mahapatra, Smruti Rekha, Derrico, Abigail M., Rai, Rajeev Kumar, Paudel, Jay R., Schlueter, Christoph, Gloskovskii, Andrei, Banerjee, Rajdeep, Hariki, Atsushi, DeGroot, Frank M. F., Sarma, D. D., Narayan, Awadhesh, Nukala, Pavan, Gray, Alexander X., Aetukuri, Naga Phani B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10556139/
https://www.ncbi.nlm.nih.gov/pubmed/37798279
http://dx.doi.org/10.1038/s41467-023-41816-3
_version_ 1785116814610530304
author Mondal, Debasish
Mahapatra, Smruti Rekha
Derrico, Abigail M.
Rai, Rajeev Kumar
Paudel, Jay R.
Schlueter, Christoph
Gloskovskii, Andrei
Banerjee, Rajdeep
Hariki, Atsushi
DeGroot, Frank M. F.
Sarma, D. D.
Narayan, Awadhesh
Nukala, Pavan
Gray, Alexander X.
Aetukuri, Naga Phani B.
author_facet Mondal, Debasish
Mahapatra, Smruti Rekha
Derrico, Abigail M.
Rai, Rajeev Kumar
Paudel, Jay R.
Schlueter, Christoph
Gloskovskii, Andrei
Banerjee, Rajdeep
Hariki, Atsushi
DeGroot, Frank M. F.
Sarma, D. D.
Narayan, Awadhesh
Nukala, Pavan
Gray, Alexander X.
Aetukuri, Naga Phani B.
author_sort Mondal, Debasish
collection PubMed
description Correlated electron materials (CEMs) host a rich variety of condensed matter phases. Vanadium dioxide (VO(2)) is a prototypical CEM with a temperature-dependent metal-to-insulator (MIT) transition with a concomitant crystal symmetry change. External control of MIT in VO(2)—especially without inducing structural changes—has been a long-standing challenge. In this work, we design and synthesize modulation-doped VO(2)-based thin film heterostructures that closely emulate a textbook example of filling control in a correlated electron insulator. Using a combination of charge transport, hard X-ray photoelectron spectroscopy, and structural characterization, we show that the insulating state can be doped to achieve carrier densities greater than 5 × 10(21) cm(−3) without inducing any measurable structural changes. We find that the MIT temperature (T(MIT)) continuously decreases with increasing carrier concentration. Remarkably, the insulating state is robust even at doping concentrations as high as ~0.2 e(−)/vanadium. Finally, our work reveals modulation-doping as a viable method for electronic control of phase transitions in correlated electron oxides with the potential for use in future devices based on electric-field controlled phase transitions.
format Online
Article
Text
id pubmed-10556139
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-105561392023-10-07 Modulation-doping a correlated electron insulator Mondal, Debasish Mahapatra, Smruti Rekha Derrico, Abigail M. Rai, Rajeev Kumar Paudel, Jay R. Schlueter, Christoph Gloskovskii, Andrei Banerjee, Rajdeep Hariki, Atsushi DeGroot, Frank M. F. Sarma, D. D. Narayan, Awadhesh Nukala, Pavan Gray, Alexander X. Aetukuri, Naga Phani B. Nat Commun Article Correlated electron materials (CEMs) host a rich variety of condensed matter phases. Vanadium dioxide (VO(2)) is a prototypical CEM with a temperature-dependent metal-to-insulator (MIT) transition with a concomitant crystal symmetry change. External control of MIT in VO(2)—especially without inducing structural changes—has been a long-standing challenge. In this work, we design and synthesize modulation-doped VO(2)-based thin film heterostructures that closely emulate a textbook example of filling control in a correlated electron insulator. Using a combination of charge transport, hard X-ray photoelectron spectroscopy, and structural characterization, we show that the insulating state can be doped to achieve carrier densities greater than 5 × 10(21) cm(−3) without inducing any measurable structural changes. We find that the MIT temperature (T(MIT)) continuously decreases with increasing carrier concentration. Remarkably, the insulating state is robust even at doping concentrations as high as ~0.2 e(−)/vanadium. Finally, our work reveals modulation-doping as a viable method for electronic control of phase transitions in correlated electron oxides with the potential for use in future devices based on electric-field controlled phase transitions. Nature Publishing Group UK 2023-10-05 /pmc/articles/PMC10556139/ /pubmed/37798279 http://dx.doi.org/10.1038/s41467-023-41816-3 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Mondal, Debasish
Mahapatra, Smruti Rekha
Derrico, Abigail M.
Rai, Rajeev Kumar
Paudel, Jay R.
Schlueter, Christoph
Gloskovskii, Andrei
Banerjee, Rajdeep
Hariki, Atsushi
DeGroot, Frank M. F.
Sarma, D. D.
Narayan, Awadhesh
Nukala, Pavan
Gray, Alexander X.
Aetukuri, Naga Phani B.
Modulation-doping a correlated electron insulator
title Modulation-doping a correlated electron insulator
title_full Modulation-doping a correlated electron insulator
title_fullStr Modulation-doping a correlated electron insulator
title_full_unstemmed Modulation-doping a correlated electron insulator
title_short Modulation-doping a correlated electron insulator
title_sort modulation-doping a correlated electron insulator
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10556139/
https://www.ncbi.nlm.nih.gov/pubmed/37798279
http://dx.doi.org/10.1038/s41467-023-41816-3
work_keys_str_mv AT mondaldebasish modulationdopingacorrelatedelectroninsulator
AT mahapatrasmrutirekha modulationdopingacorrelatedelectroninsulator
AT derricoabigailm modulationdopingacorrelatedelectroninsulator
AT rairajeevkumar modulationdopingacorrelatedelectroninsulator
AT paudeljayr modulationdopingacorrelatedelectroninsulator
AT schlueterchristoph modulationdopingacorrelatedelectroninsulator
AT gloskovskiiandrei modulationdopingacorrelatedelectroninsulator
AT banerjeerajdeep modulationdopingacorrelatedelectroninsulator
AT harikiatsushi modulationdopingacorrelatedelectroninsulator
AT degrootfrankmf modulationdopingacorrelatedelectroninsulator
AT sarmadd modulationdopingacorrelatedelectroninsulator
AT narayanawadhesh modulationdopingacorrelatedelectroninsulator
AT nukalapavan modulationdopingacorrelatedelectroninsulator
AT grayalexanderx modulationdopingacorrelatedelectroninsulator
AT aetukurinagaphanib modulationdopingacorrelatedelectroninsulator