Cargando…
Simultaneous adsorption of Cu(II), Zn(II), Cd(II) and Pb(II) from synthetic wastewater using NaP and LTA zeolites prepared from biomass fly ash
Herein, NaP and LTA zeolites were successfully synthesised from woody biomass ash with alkali fusion-assisted hydrothermal method by altering the NaOH/ash ratio, crystallisation time and crystallisation temperature. In order to reduce the synthesis costs, NaP zeolite was synthesised with no addition...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10556607/ https://www.ncbi.nlm.nih.gov/pubmed/37810836 http://dx.doi.org/10.1016/j.heliyon.2023.e20253 |
Sumario: | Herein, NaP and LTA zeolites were successfully synthesised from woody biomass ash with alkali fusion-assisted hydrothermal method by altering the NaOH/ash ratio, crystallisation time and crystallisation temperature. In order to reduce the synthesis costs, NaP zeolite was synthesised with no additional source of aluminium and silicon. The synthesised zeolites were utilized for the monocomponent and simultaneous adsorption of Cu(II), Cd(II), Pb(II) and Zn(II) ions. The maximum adsorbed amount of metals had the trend Pb(II) > Cu(II) > Cd(II) > Zn(II) for both NaP and LTA zeolite. The kinetic data fit well to the pseudo-second order model indicating that chemisorption is the rate-limiting step. The isotherm data were well described with Sips and Redlich-Peterson models indicating a non-ideal heterogeneous adsorption process. Maximum adsorption capacity of NaP zeolite was 42.9 mg/g for Cu(II) and 117.3 mg/g for Cd(II), while LTA had 140.1 mg/g and 223.5 mg/g for Cu(II) and Cd(II) ions, respectively. |
---|