Cargando…
DapBCH: a disease association prediction model Based on Cross-species and Heterogeneous graph embedding
The study of comorbidity can provide new insights into the pathogenesis of the disease and has important economic significance in the clinical evaluation of treatment difficulty, medical expenses, length of stay, and prognosis of the disease. In this paper, we propose a disease association predictio...
Autores principales: | Shi, Wanqi, Feng, Hailin, Li, Jian, Liu, Tongcun, Liu, Zhe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10556742/ https://www.ncbi.nlm.nih.gov/pubmed/37811150 http://dx.doi.org/10.3389/fgene.2023.1222346 |
Ejemplares similares
-
Graph Embedding Based Novel Gene Discovery Associated With Diabetes Mellitus
por: Du, Jianzong, et al.
Publicado: (2021) -
Hierarchical Microbial Functions Prediction by Graph Aggregated Embedding
por: Hou, Yujie, et al.
Publicado: (2021) -
Predicting lncRNA-protein interactions with bipartite graph embedding and deep graph neural networks
por: Ma, Yuzhou, et al.
Publicado: (2023) -
Overexpression of a carrot BCH gene, DcBCH1, improves tolerance to drought in Arabidopsis thaliana
por: Li, Tong, et al.
Publicado: (2021) -
Graph Embedding Deep Learning Guides Microbial Biomarkers' Identification
por: Zhu, Qiang, et al.
Publicado: (2019)