Cargando…
Developing prompts from large language model for extracting clinical information from pathology and ultrasound reports in breast cancer
PURPOSE: We aimed to evaluate the time and cost of developing prompts using large language model (LLM), tailored to extract clinical factors in breast cancer patients and their accuracy. MATERIALS AND METHODS: We collected data from reports of surgical pathology and ultrasound from breast cancer pat...
Autores principales: | Choi, Hyeon Seok, Song, Jun Yeong, Shin, Kyung Hwan, Chang, Ji Hyun, Jang, Bum-Sup |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Korean Society for Radiation Oncology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10556835/ https://www.ncbi.nlm.nih.gov/pubmed/37793630 http://dx.doi.org/10.3857/roj.2023.00633 |
Ejemplares similares
-
The feasibility of using natural language processing to extract clinical information from breast pathology reports
por: Buckley, Julliette M., et al.
Publicado: (2012) -
Inferring cancer disease response from radiology reports using large language models with data augmentation and prompting
por: Tan, Ryan Shea Ying Cong, et al.
Publicado: (2023) -
Postmastectomy Radiation Therapy in Patients With Minimally Involved Lymph Nodes: A Review of the Current Data and Future Directions
por: Jang, Bum-Sup, et al.
Publicado: (2022) -
Validation of deep learning natural language processing algorithm for keyword extraction from pathology reports in electronic health records
por: Kim, Yoojoong, et al.
Publicado: (2020) -
Unbiasing Retrosynthesis Language Models with Disconnection
Prompts
por: Thakkar, Amol, et al.
Publicado: (2023)