Cargando…
Machine learning approaches in microbiome research: challenges and best practices
Microbiome data predictive analysis within a machine learning (ML) workflow presents numerous domain-specific challenges involving preprocessing, feature selection, predictive modeling, performance estimation, model interpretation, and the extraction of biological information from the results. To as...
Autores principales: | Papoutsoglou, Georgios, Tarazona, Sonia, Lopes, Marta B., Klammsteiner, Thomas, Ibrahimi, Eliana, Eckenberger, Julia, Novielli, Pierfrancesco, Tonda, Alberto, Simeon, Andrea, Shigdel, Rajesh, Béreux, Stéphane, Vitali, Giacomo, Tangaro, Sabina, Lahti, Leo, Temko, Andriy, Claesson, Marcus J., Berland, Magali |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10556866/ https://www.ncbi.nlm.nih.gov/pubmed/37808286 http://dx.doi.org/10.3389/fmicb.2023.1261889 |
Ejemplares similares
-
Overview of data preprocessing for machine learning applications in human microbiome research
por: Ibrahimi, Eliana, et al.
Publicado: (2023) -
Advancing microbiome research with machine learning: key findings from the ML4Microbiome COST action
por: D’Elia, Domenica, et al.
Publicado: (2023) -
Applications of Machine Learning in Human Microbiome Studies: A Review on Feature Selection, Biomarker Identification, Disease Prediction and Treatment
por: Marcos-Zambrano, Laura Judith, et al.
Publicado: (2021) -
Interactions between Medications and the Gut Microbiome in Inflammatory Bowel Disease
por: Eckenberger, Julia, et al.
Publicado: (2022) -
Clinical implementation of a neonatal seizure detection algorithm
por: Temko, Andriy, et al.
Publicado: (2015)