Cargando…
Generative Artificial Intelligence for Chest Radiograph Interpretation in the Emergency Department
IMPORTANCE: Multimodal generative artificial intelligence (AI) methodologies have the potential to optimize emergency department care by producing draft radiology reports from input images. OBJECTIVE: To evaluate the accuracy and quality of AI–generated chest radiograph interpretations in the emerge...
Autores principales: | Huang, Jonathan, Neill, Luke, Wittbrodt, Matthew, Melnick, David, Klug, Matthew, Thompson, Michael, Bailitz, John, Loftus, Timothy, Malik, Sanjeev, Phull, Amit, Weston, Victoria, Heller, J. Alex, Etemadi, Mozziyar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Association
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10556963/ https://www.ncbi.nlm.nih.gov/pubmed/37796505 http://dx.doi.org/10.1001/jamanetworkopen.2023.36100 |
Ejemplares similares
-
Novel Noninvasive Biosensors and Artificial Intelligence for Optimized Heart Failure Management
por: Neill, Luke, et al.
Publicado: (2022) -
Accuracy of the Interpretation of Chest Radiographs for the Diagnosis of Paediatric Pneumonia
por: Elemraid, Mohamed A., et al.
Publicado: (2014) -
Is a postintubation chest radiograph necessary in the emergency department?
por: McGillicuddy, Daniel C., et al.
Publicado: (2009) -
Chest radiographic interpretation – an essential competency
for Africa
por: Irusen, Elvis
Publicado: (2023) -
Deep learning for distinguishing normal versus abnormal chest radiographs and generalization to two unseen diseases tuberculosis and COVID-19
por: Nabulsi, Zaid, et al.
Publicado: (2021)