Cargando…

Antifungal bio-coating of endotracheal tube built by overexpressing the MCP1 gene of Saccharomyces boulardii and employing hydrogel as a “house” to antagonize Candida albicans

BACKGROUND: For some ICU patients, an artificial airway must be established with an endotracheal tube, but Candida albicans can easily adhere to the tube surface and form a biofilm, leading to potentially life threatening fungal infections. Therefore, it is urgent to prevent and reduce C. albicans i...

Descripción completa

Detalles Bibliográficos
Autores principales: Wei, Yunyun, Qiu, Jianfeng, Han, Ziqiang, Wang, Xuanyi, Zhang, Hui, Hou, Xinya, Lv, Xiangwei, Mao, Xiaolong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10557164/
https://www.ncbi.nlm.nih.gov/pubmed/37798667
http://dx.doi.org/10.1186/s40824-023-00443-1
Descripción
Sumario:BACKGROUND: For some ICU patients, an artificial airway must be established with an endotracheal tube, but Candida albicans can easily adhere to the tube surface and form a biofilm, leading to potentially life threatening fungal infections. Therefore, it is urgent to prevent and reduce C. albicans infections introduced by the endotracheal tube. However, there are few antifungal drugs effective against C. albicans, and each of these drugs may have adverse effects on human cells. Saccharomyces boulardii is regarded as an alternative strategy to inhibit the adhesion of C. albicans, but it is affected by environmental stress. We hypothesized that it is feasible to strengthen the antagonistic ability of S. boulardii via encapsulating and genetically modification. METHODS: In this study, a bioactive material carrying the overexpressed MCP1 gene of Saccharomyces boulardii was constructed based on one-step photo-crosslinking. This material achieved spatial growth control of S. boulardii by encapsulating each S. boulardii cell within a hydrogel pore. The bioactive material was coated on an endotracheal tube and tested for its ability to inhibit the adhesion of C. albicans. Additionally, the material’s antagonistic activity towards C. albicans was evaluated by detecting intracellular Adenosine-triphosphate content, reactive oxygen species level and the activity of antioxidative enzymes. Tissue invasion experiment was executed to further evaluate the anti-adhesion ability of S. boulardii bio-coating. RESULTS: Encapsulating the overexpression of MCP1 by S. boulardii in hydrogel pores enhanced the viability of probiotics in the presence of high salt and oxidation stress. When used as the coating of an endotracheal tube, the S. boulardii bioactive material efficiently inhibited the adhesion of C. albicans by impairing the activities of superoxide dismutase and catalase and disturbing mitochondrial functions. In vivo, the S. boulardii bioactive material coating displayed good biocompatibility and reduced the host tissue invasion and virulence of C. albicans. CONCLUSIONS: The integration of genetic modification and immobilization model breaks the bottleneck of previous application of microorganisms, and provides a new way to prevent fungal infections introduced by endotracheal tubes. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40824-023-00443-1.