Cargando…
CurvAGN: Curvature-based Adaptive Graph Neural Networks for Predicting Protein-Ligand Binding Affinity
Accurately predicting the binding affinity between proteins and ligands is crucial for drug discovery. Recent advances in graph neural networks (GNNs) have made significant progress in learning representations of protein-ligand complexes to estimate binding affinities. To improve the performance of...
Autores principales: | Wu, Jianqiu, Chen, Hongyang, Cheng, Minhao, Xiong, Haoyi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10557336/ https://www.ncbi.nlm.nih.gov/pubmed/37798653 http://dx.doi.org/10.1186/s12859-023-05503-w |
Ejemplares similares
-
GraphscoreDTA: optimized graph neural network for protein–ligand binding affinity prediction
por: Wang, Kaili, et al.
Publicado: (2023) -
Agnes
por: Stamm, Peter, 1963- -
Affine Subspaces of Curvature Functions from Closed Planar Curves
por: Alese, Leonardo
Publicado: (2021) -
Development of a graph convolutional neural network model for efficient prediction of protein-ligand binding affinities
por: Son, Jeongtae, et al.
Publicado: (2021) -
Agnes Grey /
por: Brontë, Anne, 1820-1849
Publicado: (1997)