Cargando…

A 3D-Printed Offline Nano-ESI Source for Bruker MS Instruments

[Image: see text] Nanoelectrospray ionization (nano-ESI) is a highly efficient and a widely used technique for the ionization of minute amounts of analyte. Offline nano-ESI sources are convenient for the direct infusion of complex mixtures that suffer from high matrix content and are crucial for the...

Descripción completa

Detalles Bibliográficos
Autores principales: Götze, Michael, Polewski, Lukasz, Bechtella, Leïla, Pagel, Kevin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10557379/
https://www.ncbi.nlm.nih.gov/pubmed/37602654
http://dx.doi.org/10.1021/jasms.3c00214
Descripción
Sumario:[Image: see text] Nanoelectrospray ionization (nano-ESI) is a highly efficient and a widely used technique for the ionization of minute amounts of analyte. Offline nano-ESI sources are convenient for the direct infusion of complex mixtures that suffer from high matrix content and are crucial for the native mass spectrometric analysis of proteins. For Bruker instruments, no such source is readily available. Here we close this gap and present a 3D-printable nano-ESI source for Bruker instruments, which can be assembled by anyone with access to 3D printers. The source can be fitted to any Bruker mass spectrometer with an ionBooster ESI source and only requires minor, reversible changes to the original Bruker hardware. The general utility was demonstrated by recording high-resolution MS spectra of small molecules, intact proteins, as well as complex biological samples in negative and positive ion mode on two different Bruker instruments.