Cargando…

Induced Overexpression of B Cell-Activating Factor by Triiodothyronine Results in Abnormal B Cell Differentiation in Mice

Breakdown of tolerance and abnormal activation in B cells is an important mechanism in the pathogenesis of Graves’ disease (GD) and high levels of thyroid hormones (THs) can drive the progression of GD. However, the interactions between THs and abnormal activation of B cells in the context of GD are...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Shu, Li, Guo-Qing, Gu, Qing-Wei, Wang, Jie, Sun, Qi, Gu, Wen-Sha, Mao, Xiao-Ming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10557412/
https://www.ncbi.nlm.nih.gov/pubmed/37798940
http://dx.doi.org/10.1177/09636897231204075
Descripción
Sumario:Breakdown of tolerance and abnormal activation in B cells is an important mechanism in the pathogenesis of Graves’ disease (GD) and high levels of thyroid hormones (THs) can drive the progression of GD. However, the interactions between THs and abnormal activation of B cells in the context of GD are not well understood. The aim of this study was to investigate B cell-activating factor (BAFF) mediating the cross talk between THs and B cells and the possible underlying mechanisms. A high-level triiodothyronine (T3) mouse model was used to verify T3-mediated induction of overexpression of BAFF and B cell abnormal differentiation. The possible promotion of BAFF overexpression in the mice spleen macrophages during polarization to M1 by T3 was also studied. We showed that high levels of T3 can induce BAFF overexpression and lead to abnormal differentiation of B cells in the mice. While the overexpression of BAFF was observed across many tissue types in the mice, high levels of T3 could induce M1 macrophages polarization by IFN (interferon-gamma)-γ in the spleen of the mice, which in turn generated BAFF overexpression. Our findings provide a novel insight into the interactions between the endocrine and immune systems, as well as provide insight into the role of TH in the pathogenesis of GD.